
1

JavaScript Part 2 – Page 1 of 35CSCI 2910 – Client/Server-Side Programming

CSCI 2910
Client/Server-Side Programming

Topic: JavaScript Part 2

JavaScript Part 2 – Page 2 of 35CSCI 2910 – Client/Server-Side Programming

Today’s Goals
Today’s lecture will cover:
– More objects, properties, and methods of

the DOM
– The Math object
– Introduction to form validation

JavaScript Part 2 – Page 3 of 35CSCI 2910 – Client/Server-Side Programming

Intermediate File vs. HTML Output
A sometimes difficult concept is that the output
of a JavaScript script is not output to the
browser window, but instead is output to the
“intermediate” HTML file that the browser will
interpret for display.

XHTML
file

containing
scripts

XHTML
with script

output
replacing

scripts

Document
displayed
in browser

window

Browser
processes

scripts

JavaScript Part 2 – Page 4 of 35CSCI 2910 – Client/Server-Side Programming

Intermediate File vs. HTML Output
(continued)

• Since the JavaScript output is to be interpreted
by a browser as HTML, the output must contain
tags.

• Example – Assume we want a heading level 1
with a line break in the middle:
– Wrong:
document.write("This is my \n page
title");

– Right:
document.write("<h1>This is my

page title</h1>");

JavaScript Part 2 – Page 5 of 35CSCI 2910 – Client/Server-Side Programming

write vs. writeln
• There are two document object methods

used to write
– document.write(string)
– document.writeln(string)

• The only difference between the two is that
writeln appends a carriage return/linefeed
(\n) to the end of the string when printing to
the intermediate file.

JavaScript Part 2 – Page 6 of 35CSCI 2910 – Client/Server-Side Programming

Prompting as Page Loads
• Remember that scripts within the

body are executed as they are
encountered

• You can take advantage of this by
prompting the user for information as
the page loads using a function such
as window.prompt().

2

JavaScript Part 2 – Page 7 of 35CSCI 2910 – Client/Server-Side Programming

Prompting as Page Loads
(continued)

<body>
<script language= "JavaScript"
type="text/JavaScript">
<!--

var head_color;
head_color = window.prompt("What color

would you like to display these
headings in? (Enter web color)");

document.writeln("<h1 style=\"color:" +
head_color + "\">" + "My Title" +
"</h1>");

//-->
</script>
</body>

JavaScript Part 2 – Page 8 of 35CSCI 2910 – Client/Server-Side Programming

Double vs. Single Quotes
• As with any language that relies heavily on the use

of output strings, we must have a way to identify
quotation marks within a string without affecting
the way the interpreter views the string.

• In JavaScript, there are three ways to embed
quotation marks within a string:
– use single quotes within a string identified using double

quotes
– use double quotes within a string identified using single

quotes
– use the JavaScript escape characters \' or \"

JavaScript Part 2 – Page 9 of 35CSCI 2910 – Client/Server-Side Programming

Double vs. Single Quotes (cont.)
Examples:
• document.write("");
• document.write('');
• document.write("");

All three methods should work regardless of
browser

JavaScript Part 2 – Page 10 of 35CSCI 2910 – Client/Server-Side Programming

Declaring Variables
• Variables are declared using the keyword var
• Example:

var int_value, string_value

• When variables are declared, they are not
assigned a default value, unless specified by the
programmer

• All variables in JavaScript can contain a value of
any data type, i.e., JavaScript does not rigorously
follow types an will try to convert between types

• null is a valid variable value

JavaScript Part 2 – Page 11 of 35CSCI 2910 – Client/Server-Side Programming

Parsing Functions
• parseInt(string, radix) -- returns the first integer

in the string. The radix argument specifies the
base in which the number is represented in the
string, e.g., 16 (hexadecimal), 10 (decimal), or 2
(binary).

• Example:
parseInt("313 Gilbreath", 10);

would return 313
• If the first character is not a number, then the

function returns "NaN" indicating the value is
not a number.

JavaScript Part 2 – Page 12 of 35CSCI 2910 – Client/Server-Side Programming

Parsing Functions (continued)
• parseFloat(string) – returns the first floating

point number in the string.
• Example:
parseFloat("2.98% of students");

would return 2.98
• If the first character is not a number, then

the function returns "NaN" indicating the
value is not a number. This includes
characters such as $ or #.

3

JavaScript Part 2 – Page 13 of 35CSCI 2910 – Client/Server-Side Programming

isNaN()
• isNaN(value) – returns a true or false based on

whether value represents a number or not.
• "value" can be a string containing a number.
• Helpful with validation of forms.
• Examples:

– isNaN("David Tarnoff") would return true
– isNaN(4*5) would return false
– isNaN("315") would return false

JavaScript Part 2 – Page 14 of 35CSCI 2910 – Client/Server-Side Programming

unescape()
• In some cases, strings are encountered that

have certain characters replaced with
escape characters.

• For example, a URL often replaces spaces
with %20 and the '@' symbol with %40.

• unescape(encodedstring) – goes through a
string replacing escape characters with
original characters.

JavaScript Part 2 – Page 15 of 35CSCI 2910 – Client/Server-Side Programming

unescape() (continued)
For example:

document.write(
unescape("My%20e-
mail%20is%3A%20tarnoff%40etsu.edu%21"));

would output as:

My e-mail is: tarnoff@etsu.edu!

JavaScript Part 2 – Page 16 of 35CSCI 2910 – Client/Server-Side Programming

Math Object

• JavaScript provides this utility object for
your use in scripting.

• The Math object isn’t part of the DOM,
i.e., it is not a conceptual component of
a web page.

• The Math object is a stand alone object
provided for use with mathematical
operations

JavaScript Part 2 – Page 17 of 35CSCI 2910 – Client/Server-Side Programming

Math Object Properties
• Math.E – returns the base of natural logarithms, i.e.,

e ≈ 2.7183
• Math.LN10 – returns the natural logarithm of 10, i.e.,

ln(10) ≈ 2.3026
• Math.LN2 – returns the natural logarithm of 2, i.e.,

ln(2) ≈ 0.6931
• Math.LOG10E – returns the base 10 logarithm of e, i.e.,

log10(e) ≈ 0.4343
• Math.LOG2E – returns the base 2 logarithm of e, i.e.,

log2(e) ≈ 1.4427
• Math.PI – returns the ratio of the circuference of a circle to its

diameter, i.e., pi ≈ 3.1416
• Math.SQRT1_2 – returns the value of 1 divided by the square

root of 2, i.e., 1/(√2) ≈ 0.7071
• Math.SQRT2 – returns the square root of 2, i.e., √2 ≈ 1.4142

JavaScript Part 2 – Page 18 of 35CSCI 2910 – Client/Server-Side Programming

Math Object Methods
• Math.abs(x) – returns the absolute value of x
• Math.acos(x) – returns the arccosine of x as a numeric

value between 0 and PI radians
• Math.asin(x) – returns the arcsine of x as a numeric value

between -PI/2 and PI/2 radians
• Math.atan(x) – returns the arctangent of x as a numeric

value between -PI/2 and PI/2 radians
• Math.atan2(y, x) – returns the arctangent of the quotient of

its arguments
• Math.ceil(x) – returns the smallest integer greater than or

equal to x
• Math.cos(x) – returns the cosine of x where x is in radians
• Math.exp(x) – returns the value of ex where e is Euler's

constant

4

JavaScript Part 2 – Page 19 of 35CSCI 2910 – Client/Server-Side Programming

Math Object Methods (continued)
• Math.floor(x) – returns the largest integer less than or

equal to x
• Math.log(x) – returns the natural logarithm of x
• Math.max(x, y) – returns the greater of x and y
• Math.min(x, y) – returns the lesser of x and y
• Math.pow(x, y) – returns the value of xy

• Math.random() – returns a pseudo-random number
between 0 and 1

• Math.round(x) – rounds x to the nearest integer
• Math.sin(x) – returns the sine of x where x is in radians
• Math.sqrt(x) – returns the square root x
• Math.tan(x) – returns the tangent of x where x is in radians

JavaScript Part 2 – Page 20 of 35CSCI 2910 – Client/Server-Side Programming

Accessing Data from Forms
• Before we get to the point where we're trying to

access data, let's talk a little about the form object
and its properties and methods

• One way to "point" to a specific form object is to
access the document object forms array.

document.forms[n]
• The most reliable way to reference a form object is

to consistently identify everything with the name
and id attributes.

document.formname
document.forms["formname"]

JavaScript Part 2 – Page 21 of 35CSCI 2910 – Client/Server-Side Programming

Form Object Properties
• action – Returns the URL address to which

the form's data will be submitted.
• length – Returns the number of elements in

the form.
• method – Returns a string specifying data

submission method, i.e., either 'get' or 'post'.
• target – Returns the target window where

the form's response will appear.

JavaScript Part 2 – Page 22 of 35CSCI 2910 – Client/Server-Side Programming

Form Object Methods
• reset() – Resets the form to its default

values. (Same result as clicking the reset
button.)

• submit() – Submits the form's data. (Same
result as clicking the submit button.)

JavaScript Part 2 – Page 23 of 35CSCI 2910 – Client/Server-Side Programming

Accessing Element Values
• One way to "point" to a specific element in a form is to

access the element array under the form object.
document.formname.elements[n]

where n equals the position the element holds in the
order that the elements were added to the form. Huh?

• The most reliable way to reference an element of a
form is to consistently identify everything with the
name and id attributes.

document.formname.elementname
document.forms["formname"].elementname

JavaScript Part 2 – Page 24 of 35CSCI 2910 – Client/Server-Side Programming

Form Element Object Properties
• defaultValue – sets or returns a string

representing the default value of the element.
• name – sets or returns the element's name or

id attribute.
• type – returns the element's type property.
• value – sets or returns the element's value

attribute. Works differently for different
elements.

5

JavaScript Part 2 – Page 25 of 35CSCI 2910 – Client/Server-Side Programming

Form Element Object Methods
• blur() – removes the focus from the

specified element
• click() – simulates a mouse-click for some

elements
• focus() – returns focus to the specified

element

JavaScript Part 2 – Page 26 of 35CSCI 2910 – Client/Server-Side Programming

The Use of value
<form name="userinput" id="userinput">
<input type="checkbox" name="gen_check" id="gen_check" checked="checked" />

Checkbox

<input type="radio" name="gen_radiobutton" id="gen_radiobutton" value="1" /> First
<input type="radio" name="gen_radiobutton" id="gen_radiobutton" value="2" /> Second
<input type="radio" name="gen_radiobutton" id="gen_radiobutton" value="3" /> Third

<input type="text" name="gen_text" id="gen_text" value="Type name here">

<select name="gen_select" id="gen_select" size="1">

<option value="one">One</option>
<option value="2">Two</option>
<option value="3">Three</option>
<option value="four">Four</option>

</select>

<input type="file" name="gen_file" id="gen_file" size="20" />

<input type="button" onClick = "printVals()" name="gen_button" id="gen_button"

value="Click here" />
<input type="reset" value="Reset" />

<textarea cols="40" rows="6" name="output" id="output" /></textarea>
</form>

JavaScript Part 2 – Page 27 of 35CSCI 2910 – Client/Server-Side Programming

The Use of value (continued)

JavaScript Part 2 – Page 28 of 35CSCI 2910 – Client/Server-Side Programming

The Use of value (continued)
var output_string;
function printVals()
{

output_string="Checkbox value = " +
document.userinput.gen_check.checked + "\n"

+ "Radio button value = " +
document.userinput.gen_radiobutton.value + "\n"

+ "Text value = " +
document.userinput.gen_text.value + "\n"

+ "Select value = " +
document.userinput.gen_select.value + "\n"

+ "File selection value = " +
document.userinput.gen_file.value + "\n"

+ "Button value = " +
document.userinput.gen_button.value + "\n";

document.userinput.output.value=output_string;
}

JavaScript Part 2 – Page 29 of 35CSCI 2910 – Client/Server-Side Programming

The Use of value (continued)

JavaScript Part 2 – Page 30 of 35CSCI 2910 – Client/Server-Side Programming

The Use of value (continued)
• Some of the values make sense, e.g., the

text value equaled the text in the box.
• Some of the values did not make sense

– Checkbox value always equals "on"
– Radio buttons always equal "undefined"
– Button value equals the text on the button

6

JavaScript Part 2 – Page 31 of 35CSCI 2910 – Client/Server-Side Programming

The Use of value (continued)
• Solutions

– To read the checkbox values, use the property
checked – returns "true" or "false"

– Associate an onClick event for each radio
button that modifies a variable

– Associate an onClick event for the button to
indicate when it is pressed.

JavaScript Part 2 – Page 32 of 35CSCI 2910 – Client/Server-Side Programming

Form Validation
• A very common application of client-side

scripts is for validating the data users have
entered on a form.

• For example, we would like to make sure
that the user has not done something like
entered the word "dog" where the form
asked for an age.

• The functions covered over the past two
lectures will allow us to access form data
and verify that it is correct.

JavaScript Part 2 – Page 33 of 35CSCI 2910 – Client/Server-Side Programming

Simple Number Verification
The form below creates a text box and a button.

<form name="sample" id="sample">

Enter an integer in this field:

<input type="text" size="20"
name="justanumber" id="justanumber"
onblur="integercheck()" />

<input type="button" value="Finished" />

</form>

JavaScript Part 2 – Page 34 of 35CSCI 2910 – Client/Server-Side Programming

Simple Number Verification (continued)
<script language="JavaScript"
type="text/javascript">

function integercheck()
{
if (isNaN(document.sample.justanumber))
{

window.alert("This field requires an
integer!");

document.sample.justanumber.focus();
}

}
</script>

JavaScript Part 2 – Page 35 of 35CSCI 2910 – Client/Server-Side Programming

Checking for '@' in E-mail
function emailcheck(email_string)

{

if(email_string.indexOf("@")==-1)

window.alert("Not a valid
email address!");

}

