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CSCI 2910 
Client/Server-Side Programming

Topic: JavaScript Part 2
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Today’s Goals
Today’s lecture will cover: 
– More objects, properties, and methods of 

the DOM
– The Math object
– Introduction to form validation
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Intermediate File vs. HTML Output
A sometimes difficult concept is that the output 
of a JavaScript script is not output to the 
browser window, but instead is output to the 
“intermediate” HTML file that the browser will 
interpret for display.
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Intermediate File vs. HTML Output 
(continued)

• Since the JavaScript output is to be interpreted 
by a browser as HTML, the output must contain 
tags.

• Example – Assume we want a heading level 1 
with a line break in the middle:
– Wrong:
document.write("This is my \n page 
title");

– Right:
document.write("<h1>This is my <br /> 
page title</h1>");
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write vs. writeln
• There are two document object methods 

used to write
– document.write(string)
– document.writeln(string)

• The only difference between the two is that 
writeln appends a carriage return/linefeed 
(\n) to the end of the string when printing to 
the intermediate file.
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Prompting as Page Loads
• Remember that scripts within the 

body are executed as they are 
encountered

• You can take advantage of this by 
prompting the user for information as 
the page loads using a function such 
as window.prompt().
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Prompting as Page Loads 
(continued)

<body>
<script language= "JavaScript" 
type="text/JavaScript">
<!--

var head_color;
head_color = window.prompt("What color 

would you like to display these
headings in? (Enter web color)");

document.writeln("<h1 style=\"color:" + 
head_color + "\">" + "My Title" + 
"</h1>");

//-->
</script>
</body>
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Double vs. Single Quotes
• As with any language that relies heavily on the use 

of output strings, we must have a way to identify 
quotation marks within a string without affecting 
the way the interpreter views the string.

• In JavaScript, there are three ways to embed 
quotation marks within a string:
– use single quotes within a string identified using double 

quotes
– use double quotes within a string identified using single 

quotes
– use the JavaScript escape characters \' or \"
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Double vs. Single Quotes (cont.)
Examples:
• document.write("<a class='menu'>");
• document.write('<a class="menu">');
• document.write("<a class=\"menu\">");

All three methods should work regardless of
browser
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Declaring Variables
• Variables are declared using the keyword var
• Example:

var int_value, string_value

• When variables are declared, they are not 
assigned a default value, unless specified by the 
programmer

• All variables in JavaScript can contain a value of 
any data type, i.e., JavaScript does not rigorously 
follow types an will try to convert between types

• null is a valid variable value
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Parsing Functions
• parseInt(string, radix) -- returns the first integer 

in the string. The radix argument specifies the 
base in which the number is represented in the 
string, e.g., 16 (hexadecimal), 10 (decimal), or 2 
(binary). 

• Example: 
parseInt("313 Gilbreath", 10);

would return 313
• If the first character is not a number, then the 

function returns "NaN" indicating the value is 
not a number.
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Parsing Functions (continued)
• parseFloat(string) – returns the first floating 

point number in the string.
• Example: 
parseFloat("2.98% of students");

would return 2.98
• If the first character is not a number, then 

the function returns "NaN" indicating the 
value is not a number.  This includes 
characters such as $ or #.
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isNaN()
• isNaN(value) – returns a true or false based on 

whether value represents a number or not.
• "value" can be a string containing a number.
• Helpful with validation of forms. 
• Examples:

– isNaN("David Tarnoff") would return true
– isNaN(4*5) would return false
– isNaN("315") would return false
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unescape()
• In some cases, strings are encountered that 

have certain characters replaced with 
escape characters.  

• For example, a URL often replaces spaces 
with %20 and the '@' symbol with %40.

• unescape(encodedstring) – goes through a 
string replacing escape characters with 
original characters. 
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unescape() (continued)
For example:

document.write(
unescape("My%20e-
mail%20is%3A%20tarnoff%40etsu.edu%21"));

would output as:

My e-mail is: tarnoff@etsu.edu! 
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Math Object

• JavaScript provides this utility object for 
your use in scripting.  

• The Math object isn’t part of the DOM, 
i.e., it is not a conceptual component of 
a web page. 

• The Math object is a stand alone object 
provided for use with mathematical 
operations
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Math Object Properties
• Math.E – returns the base of natural logarithms, i.e., 

e ≈ 2.7183
• Math.LN10 – returns the natural logarithm of 10, i.e., 

ln(10) ≈ 2.3026
• Math.LN2 – returns the natural logarithm of 2, i.e., 

ln(2) ≈ 0.6931
• Math.LOG10E – returns the base 10 logarithm of e, i.e., 

log10(e) ≈ 0.4343
• Math.LOG2E – returns the base 2 logarithm of e, i.e., 

log2(e) ≈ 1.4427
• Math.PI – returns the ratio of the circuference of a circle to its 

diameter, i.e., pi ≈ 3.1416
• Math.SQRT1_2 – returns the value of 1 divided by the square 

root of 2, i.e., 1/(√2) ≈ 0.7071
• Math.SQRT2 – returns the square root of 2, i.e., √2 ≈ 1.4142
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Math Object Methods
• Math.abs(x) – returns the absolute value of x
• Math.acos(x) – returns the arccosine of x as a numeric 

value between 0 and PI radians
• Math.asin(x) – returns the arcsine of x as a numeric value 

between -PI/2 and PI/2 radians
• Math.atan(x) – returns the arctangent of x as a numeric 

value between -PI/2 and PI/2 radians
• Math.atan2(y, x) – returns the arctangent of the quotient of 

its arguments
• Math.ceil(x) – returns the smallest integer greater than or 

equal to x
• Math.cos(x) – returns the cosine of x where x is in radians
• Math.exp(x) – returns the value of ex where e is Euler's 

constant
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Math Object Methods (continued)
• Math.floor(x) – returns the largest integer less than or 

equal to x
• Math.log(x) – returns the natural logarithm of x
• Math.max(x, y) – returns the greater of x and y
• Math.min(x, y) – returns the lesser of x and y
• Math.pow(x, y) – returns the value of xy

• Math.random() – returns a pseudo-random number 
between 0 and 1

• Math.round(x) – rounds x to the nearest integer
• Math.sin(x) – returns the sine of x  where x is in radians
• Math.sqrt(x) – returns the square root x
• Math.tan(x) – returns the tangent of x where x is in radians
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Accessing Data from Forms
• Before we get to the point where we're trying to 

access data, let's talk a  little about the form object 
and its properties and methods

• One way to "point" to a specific form object is to 
access the document object forms array.

document.forms[n]
• The most reliable way to reference a form object is 

to consistently identify everything with the name
and id attributes.

document.formname
document.forms["formname"]
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Form Object Properties
• action – Returns the URL address to which 

the form's data will be submitted. 
• length – Returns the number of elements in 

the form.
• method – Returns a string specifying data 

submission method, i.e., either 'get' or 'post'.
• target – Returns the target window where 

the form's response will appear.
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Form Object Methods
• reset( ) – Resets the form to its default 

values. (Same result as clicking the reset 
button.)

• submit( ) – Submits the form's data. (Same 
result as clicking the submit button.)
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Accessing Element Values
• One way to "point" to a specific element in a form is to 

access the element array under the form object.
document.formname.elements[n]

where n equals the position the element holds in the 
order that the elements were added to the form. Huh?

• The most reliable way to reference an element of a 
form is to consistently identify everything with the 
name and id attributes.

document.formname.elementname
document.forms["formname"].elementname
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Form Element Object Properties
• defaultValue – sets or returns a string 

representing the default value of the element.
• name – sets or returns the element's name or 

id attribute.
• type – returns the element's type property.
• value – sets or returns the element's value 

attribute. Works differently for different 
elements.
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Form Element Object Methods
• blur( ) – removes the focus from the 

specified element
• click( ) – simulates a mouse-click for some 

elements
• focus( ) – returns focus to the specified 

element
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The Use of value
<form name="userinput" id="userinput">
<input type="checkbox" name="gen_check" id="gen_check" checked="checked" />

Checkbox<br /><br />
<input type="radio" name="gen_radiobutton" id="gen_radiobutton" value="1" /> First 
<input type="radio" name="gen_radiobutton" id="gen_radiobutton" value="2" /> Second
<input type="radio" name="gen_radiobutton" id="gen_radiobutton" value="3" /> Third

<br /><br />
<input type="text" name="gen_text" id="gen_text" value="Type name here"><br /><br />
<select name="gen_select" id="gen_select" size="1">

<option value="one">One</option>
<option value="2">Two</option>
<option value="3">Three</option>
<option value="four">Four</option>

</select><br /><br />
<input type="file" name="gen_file" id="gen_file" size="20" /><br /><br />
<input type="button" onClick = "printVals()" name="gen_button" id="gen_button" 

value="Click here" />
<input type="reset" value="Reset" />
<br /><br /><br />
<textarea cols="40" rows="6" name="output" id="output" /></textarea>
</form>
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The Use of value (continued)
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The Use of value (continued)
var output_string;
function printVals()
{

output_string="Checkbox value = " +
document.userinput.gen_check.checked + "\n" 

+ "Radio button value = " + 
document.userinput.gen_radiobutton.value + "\n"

+ "Text value = " + 
document.userinput.gen_text.value + "\n" 

+ "Select value = " + 
document.userinput.gen_select.value + "\n"

+ "File selection value = " + 
document.userinput.gen_file.value + "\n"

+ "Button value = " + 
document.userinput.gen_button.value + "\n";

document.userinput.output.value=output_string;
}
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The Use of value (continued)
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The Use of value (continued)
• Some of the values make sense, e.g., the 

text value equaled the text in the box.
• Some of the values did not make sense

– Checkbox value always equals "on"
– Radio buttons always equal "undefined"
– Button value equals the text on the button 
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The Use of value (continued)
• Solutions

– To read the checkbox values, use the property 
checked – returns "true" or "false"

– Associate an onClick event for each radio 
button that modifies a variable

– Associate an onClick event for the button to 
indicate when it is pressed.
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Form Validation
• A very common application of client-side 

scripts is for validating the data users have 
entered on a form.

• For example, we would like to make sure 
that the user has not done something like 
entered the word "dog" where the form 
asked for an age.

• The functions covered over the past two 
lectures will allow us to access form data 
and verify that it is correct.
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Simple Number Verification
The form below creates a text box and a button.

<form name="sample" id="sample">

Enter an integer in this field: 

<input type="text" size="20" 
name="justanumber" id="justanumber" 
onblur="integercheck()" /><br />

<input type="button" value="Finished" />

</form>
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Simple Number Verification (continued)
<script language="JavaScript" 
type="text/javascript">

function integercheck()
{
if (isNaN(document.sample.justanumber))
{

window.alert("This field requires an 
integer!");

document.sample.justanumber.focus();
}

}
</script>
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Checking for '@' in E-mail
function emailcheck(email_string)

{

if(email_string.indexOf("@")==-1)

window.alert("Not a valid 
email address!");

} 


