
1

Advanced JavaScript Topics – Page 1 of 31CSCI 2910 – Client/Server-Side Programming

CSCI 2910 
Client/Server-Side Programming

Topic: Advanced JavaScript Topics

Advanced JavaScript Topics – Page 2 of 31CSCI 2910 – Client/Server-Side Programming

Today’s Goals
Today’s lecture will cover: 
– More on new and objects
– Built in objects Image, String, Date, 

Boolean, and Number
– The getElementById() method
– Layers

Advanced JavaScript Topics – Page 3 of 31CSCI 2910 – Client/Server-Side Programming

More on new
• In the exercise from last class period, we 

created elements of an array using the 
keyword new. Let's look deeper.

• The new operator is used to create an 
instance of a pre-defined object. 
(Remember that instances are to objects as 
proper nouns are to nouns.)

• If an object has a constructor function, that 
function is executed when an instance of the 
object is created.

Advanced JavaScript Topics – Page 4 of 31CSCI 2910 – Client/Server-Side Programming

Creating/Defining Objects
• A user can define an object.
• In JavaScript, an object is defined by defining the 

constructor function.
• A constructor function is defined just like a function.
• The name of the constructor function defines the 

name of the object.
• The properties and methods of the object are defined 

and initialized within the constructor function.
• The new operator is the only way to call a constructor.

Advanced JavaScript Topics – Page 5 of 31CSCI 2910 – Client/Server-Side Programming

Creating/Defining Objects (continued)
• For example, the following function defines the object instructor:

function instructor(name, phone, email)
{

this.name = name;
this.phone = phone;
this.email = email;

}

• To create an instance of instructor, simply initialize a var with 
the constructor containing the appropriate arguments.

var tarnoff = new instructor("David Tarnoff", 
"423.439.6404", "tarnoff@etsu.edu");

Advanced JavaScript Topics – Page 6 of 31CSCI 2910 – Client/Server-Side Programming

Creating/Defining Objects (continued)

• The keyword this is used to identify the 
current instance being referenced by the 
function.

• Remember that objects can be embedded 
into hierarchies, i.e., an object can become 
the property of an object.

• For example, the instructor object defined 
above could become a property of a 
course_section object.



2

Advanced JavaScript Topics – Page 7 of 31CSCI 2910 – Client/Server-Side Programming

Creating/Defining Objects (continued)
function course_section(course_title, 
section_number, assigned_instructor)

{
this.title = course_title;
this.section_number = section_number;
this.instructor = assigned_instructor;

}

An instance could then be created:

var CSCI2910_001 = new 
course_section("Client/Server-Side 
Programming", "001", tarnoff);

Advanced JavaScript Topics – Page 8 of 31CSCI 2910 – Client/Server-Side Programming

Creating/Defining Objects (continued)

• To create a function for an object, we used the 
keyword "prototype".

• Within the constructor function, insert the code:
this.prototype.myfunction = function(args)
{

// insert myfunction code here
}

• Can also define outside constructor function:
obj_name.prototype.myfunction = function(args)
{

// insert myfunction code here
}

Advanced JavaScript Topics – Page 9 of 31CSCI 2910 – Client/Server-Side Programming

Image Object
• There are a number of pre-defined JavaScript objects 

such as the Image object
• Properties of the Image object include:

– border – Contains the width of the border in pixels (read 
only)

– complete – Boolean value indicating whether the browser 
has finished loading the image. (read only)

– height – The height of the image in pixels (read only) 
– lowsrc – Specifies the URL of a low-resolution replacement 

of the image which is loaded and displayed before the high-
resolution image is loaded and displayed

– name – This is the name/id property of the image 
– src – Specifies the URL of the image
– width – The width of the image in pixels (read only) 

Advanced JavaScript Topics – Page 10 of 31CSCI 2910 – Client/Server-Side Programming

String Object
• The constructor for a new String object 

takes as its argument the initial string:

myString = new String("This is great!");

• The property length returns the length of the 
string.  For the example below, mylength
would equal 14.

mylength = myString.length;

Advanced JavaScript Topics – Page 11 of 31CSCI 2910 – Client/Server-Side Programming

String Object Methods
• charAt(index) – returns the character at the position in the string referred to

by index.
• charCodeAt(index) – returns the Unicode value of the character at the 

position in the string referred to by index. 
• fromCharCode(num1,...,numN) – creates a string from the sequence of 

Unicode values passed to it as arguments.
• toLowerCase( ) – converts all of the characters in the string to lower case. 
• toUpperCase( ) – converts all of the characters in the string to upper case.  
• indexOf(character [, start_index]) – returns the index of the first 

occurrence of the specified character. If start_index is used, search begins 
from that point in the string.

• lastIndexOf(character [, start_index]) – returns the index of the first 
occurrence of the specified character. If start_index is used, search begins 
from that point in the string. 

• split(delimiter) – splits a string into substrings and returns an array that 
contains the resulting substrings.

Advanced JavaScript Topics – Page 12 of 31CSCI 2910 – Client/Server-Side Programming

Formatting Methods of String
• There are some methods of the object String that 

when used in conjunction with an output method 
will create HTML like formatting.  For example, the 
method sub() will cause the text to be outputted as 
a subscript:

var subscript = "24";
document.write("A" + subscript.sub());

• outputs the following to the HTML screen:
A24



3

Advanced JavaScript Topics – Page 13 of 31CSCI 2910 – Client/Server-Side Programming

Formatting Methods of String 
(continued)

• anchor("name") – creates an HTML anchor. 
• blink() – makes the displayed string blink.  (Of course 

you know the warnings about blink in HTML, right?)
• fixed() – makes the displayed string appear as if 

contained within <tt>...</tt> tags.
• strike() – makes the displayed string  appear as if 

contained within <strike>...</strike> tags. (strike 
through)

• sub() – makes the displayed string appear as if 
contained within <sub>...</sub> tags. (subscript)

• sup() – makes the displayed string appear as if 
contained within <sup>...</sup> tags. (superscript)

• link("URL") – creates an HTML link pointing to URL.

Advanced JavaScript Topics – Page 14 of 31CSCI 2910 – Client/Server-Side Programming

In-Class Exercise
• Divide into teams.
• Using the printout of FormChek.js, pick a 

procedure and discuss within your team how 
the procedure works.  Pick an interesting 
one.

Advanced JavaScript Topics – Page 15 of 31CSCI 2910 – Client/Server-Side Programming

Date Object
• There are a number of constructors that can be used to create 

a new Date object.
– new Date()
– new Date(milliseconds)
– new Date(dateString)
– new Date(yr_num, mo_num, day_num [, hr_num, min_num, sec_num, 

ms_num])
• Sometimes, the arguments to these constructors may be 

confusing
• milliseconds – an integer that represents the number of 

milliseconds since 01/01/70 00:00:00.
• dateString – a string that represents the date in a format that is 

recognized by the Date.parse method.
• yr_num, mo_num, day_num – a set of integers that represent 

the year, month, and day of the date
• hr_num, min_num, sec_num, ms_num – a set of integers that 

represent the hours, minutes, seconds, and milliseconds.
Advanced JavaScript Topics – Page 16 of 31CSCI 2910 – Client/Server-Side Programming

Date Object Methods 
(Source: www.devguru.com)

• getDate( ) – returns an integer (between 1 and 31) 
representing the day of the month for the specified (local time)
date.

• getDay( ) – returns an integer (0 for Sunday thru 6 for 
Saturday) representing the day of the week.

• getFullYear( ) – returns an integer representing the year of a 
specified date. The integer returned is a four digit number, 
1999, for example, and this method is to be preferred over 
getYear.

• getHours( ) – returns an integer between 0 and 23 that 
represents the hour (local time) for the specified date.

• getMilliseconds( ) – returns an integer between 0 and 999 that 
represents the milliseconds (local time) for the specified date.

• getMinutes( ) – returns an integer between 0 and 59 that 
represents the minutes (local time) for the specified date.

Advanced JavaScript Topics – Page 17 of 31CSCI 2910 – Client/Server-Side Programming

Date Object Methods (continued)
(Source: www.devguru.com)

• getMonth( ) – returns an integer (0 for January thru 11 for December) that 
represents the month for the specified date.

• getSeconds( ) – returns an integer between 0 and 59 that represents the 
seconds (local time) for the specified date.

• getTime( ) – returns a numeric value representing the number of 
milliseconds since midnight 01/01/1970 for the specified date.

• getTimezoneOffset( ) – returns the difference in minutes between local time 
and Greenwich Mean Time. This value is not a constant, as you might think, 
because of the practice of using Daylight Saving Time.

• getUTCDate( ) – returns an integer between 1 and 31 that represents the 
day of the month, according to universal time, for the specified date.

• getUTCDay( ) – returns an integer (0 for Sunday thru 6 for Saturday) that 
represents the day of the week, according to universal time, for the specified 
date.

• getUTCFullYear( ) – returns a four-digit absolute number that represents 
the year, according to universal time, for the supplied date.

Advanced JavaScript Topics – Page 18 of 31CSCI 2910 – Client/Server-Side Programming

Date Object Methods (continued)
(Source: www.devguru.com)

• getUTCHours( ) – returns an integer between 0 and 23 that represents 
the hours, according to universal time, in the supplied date.

• getUTCMilliseconds( ) – returns an integer between 0 and 999 that 
represents the milliseconds, according to universal time, in the
specified date.

• getUTCMinutes( ) – returns an integer between 0 and 59 that 
represents the minutes, in universal time, for the supplied date.

• getUTCMonth( ) – returns an integer, 0 for January thru 11 for 
December, according to universal time, for the specified date.

• getUTCSeconds( ) – returns an integer between 0 and 59 that 
represents the seconds, according to universal time, for the specified 
date.

• parse(dateString) – takes a date string and returns the number of 
milliseconds since January 01 1970 00:00:00.



4

Advanced JavaScript Topics – Page 19 of 31CSCI 2910 – Client/Server-Side Programming

Date Object Methods (continued)
(Source: www.devguru.com)

• setDate(dateVal) – used to set the day of the month using an 
integer for the supplied date according to local time. (1 to 31)

• setFullYear(yearVal [, monthVal, dayVal]) – used to set the 
full year for the supplied date according to local time.

• setHours(hoursVal [, minutesVal, secondsVal, msVal]) –
used to set the hours for the supplied date according to local 
time.

• setMilliseconds(millisecondsVal) – used to set the 
milliseconds for the supplied date according to local time. (0 to 
999)

• setMinutes(minutesVal [, secondsVal, msVal]) – used to set 
the minutes for the supplied date according to local time.

• setMonth(monthVal [, dayVal]) – used to set the month for the 
supplied date according to local time.

• setSeconds(secondsVal [, msVal]) – used to set the seconds 
for the specified date according to local time.

Advanced JavaScript Topics – Page 20 of 31CSCI 2910 – Client/Server-Side Programming

Date Object Methods (continued)
(Source: www.devguru.com)

• setTime(timeVal) – used to set the time of a Date object according to 
local time. The timeVal argument is an integer that represents the 
number of milliseconds elapsed since 1 January 1970 00:00:00.

• setUTC?????( ) – there are similar functions for setting UTC date
• toGMTString( ) – converts a local date to Greenwich Mean Time.
• toLocaleString( ) – uses the relevant locale's date conventions when 

converting a date to a string.
• toString() – returns a string representing a specified object.
• toUTCString( ) – uses the universal time convention when converting 

a date to a string.
• UTC(year, month, day [, hours, minutes, seconds, ms]) – returns 

the number of milliseconds from the date in a Date object since 
January 1, 1970 00:00:00 according to universal time. This is a static 
method of Date so the format is always Date.UTC() as opposed to 
objectName.UTC().

Advanced JavaScript Topics – Page 21 of 31CSCI 2910 – Client/Server-Side Programming

Boolean Object
• A number of methods such as isNaN() return 

true/false values
• Programmers can create their own true/false 

values using Boolean elements. 
• Can create objects explicitly using new along with 

constructor (constructor takes as argument initial 
value – default is "false")

var b_val = new Boolean("true"); 

• Supports toString() method.

Advanced JavaScript Topics – Page 22 of 31CSCI 2910 – Client/Server-Side Programming

Number Object
• There is an object allowing programmers to 

create variables to hold numeric constants.  
• Primarily used to access Number methods.

const_val = new Number(24);

• Number properties:
– MAX_VALUE – property that represents the largest 

possible JavaScript value (approx. 1.79769e+308)
– MIN_VALUE – property that represents the smallest 

possible positive JavaScript value. (5e-324)

Advanced JavaScript Topics – Page 23 of 31CSCI 2910 – Client/Server-Side Programming

Number Object Methods
• toExponential(num_digits) – returns a string 

containing the number in exponential form with the 
number of digits following the decimal point 
defined by num_digits..

• toFixed(num_digits) – returns a string containing 
the number represented in fixed-point notation 
with the number of digits following the decimal 
point defined by num_digits.

• toString([radix]) – returns a string representing 
the Number object. If used, "radix" indicates the 
base to be used for representation.  "radix" can be 
between 2 and 36.

Advanced JavaScript Topics – Page 24 of 31CSCI 2910 – Client/Server-Side Programming

Accessing HTML Elements as Objects

• In order to have access to the object properties 
and methods inherent to an HTML element, we 
have to declare an object instance to refer to 
the HTML element.

• This is done with the getElementById()
method.

var html_obj =  document.getElementById("test");

• This code will create the object html_obj that 
points to the tag that used the name/id "test".



5

Advanced JavaScript Topics – Page 25 of 31CSCI 2910 – Client/Server-Side Programming

Modifying the Style of HTML 
Objects

• One of the most common uses for getElementById() is 
to create an HTML object in order to modify its style or 
change one of its attributes.

• Style typically uses hyphens, e.g., font-size.
• JavaScript replaces hyphens by capitalizing next 

character, e.g., fontSize replaces font-size.

html_obj.style.fontSize = "16px";

html_obj.setAttribute("align", "center");

Advanced JavaScript Topics – Page 26 of 31CSCI 2910 – Client/Server-Side Programming

Layers
• In HTML, the elements are displayed in the order 

that they are encountered in the source.
• With CSS, positioning became easier, but 

elements still fought in shared space with margins 
and padding.

• The concept of layers is one that has been used in 
graphics for a long time, i.e., the concept that 
groups of elements can reside on different planes 
in the z-direction, not just the x- and y- directions.

Advanced JavaScript Topics – Page 27 of 31CSCI 2910 – Client/Server-Side Programming

Layers (continued)
A number of benefits come with this 
capability:
– Elements can be placed at exact X and Y 

positions without fighting for space with 
elements on other layers.

– Elements can overlap.
– Transparent elements can have other elements 

showing through.

Advanced JavaScript Topics – Page 28 of 31CSCI 2910 – Client/Server-Side Programming

Layer Attributes
• Layer element is define using the HTML 

<layer>...</layer> tags
• Attributes of the <layer> tag:

– name/id = "layername" – same as name and id for other 
HTML elements

– left = "pixels" – number of pixels from the left edge of 
the browser window

– top = "pixels" – number of pixels from the top edge of 
the browser window

– z-index = "integer" – an integer specifying the position of 
the layer with respect to the other layers.  The higher 
numbers are stacked on top of the lower ones.

Advanced JavaScript Topics – Page 29 of 31CSCI 2910 – Client/Server-Side Programming

Layer Attributes (continued)
– above = "layername" – this attribute allows the 

programmer to indicate the name/id of a layer above 
which this layer is to be placed.  (Used instead of z-
index)

– below = "layername" – this attribute allows the 
programmer to indicate the name/id of a layer below 
which this layer is to be placed. 

– visibility = "show | hide | inherit" – determines whether 
the layer is displayed or not.  Can be changed real-time 
to create certain effects such as swapping text.

– bgcolor = "rgbColor" – specifies background color of 
layer.

– background ="imageURL" – specifies background 
image of layer.

Advanced JavaScript Topics – Page 30 of 31CSCI 2910 – Client/Server-Side Programming

JavaScript Control of Layers
• In JavaScript, the layers appear in an array 

called "layers".
• Can access these layers in one of three 

ways:
– document.layerName
– document.layers[index]

– document.layers["layerName"]

• A layer's properties can be accessed with 
the syntax:

layerName.propertyName



6

Advanced JavaScript Topics – Page 31 of 31CSCI 2910 – Client/Server-Side Programming

JavaScript Control of Layers 
(continued)

Layers also have some methods:
• offset(x,y) – Changes a layer's position by using the 

x and y values as offsets from the current position.
• moveTo(x,y) – Changes a layer's position my 

moving its upper left corner to the position specified 
by x, y.

• resize(width,height) – Changes a layer's size.
• moveAbove(layerName) – Moves layer to position 

immediately above layer referred to by layerName.
• moveBelow(layerName) – Moves layer to position 

immediately below layer referred to by layerName.


