
1

Objects in PHP – Page 1 of 46CSCI 2910 – Client/Server-Side Programming

CSCI 2910
Client/Server-Side Programming

Topic: More Topics in PHP
Reading: Williams & Lane pp. 108–121 and

232–243

Objects in PHP – Page 2 of 46CSCI 2910 – Client/Server-Side Programming

Today's Goals
• Today we will begin with a discussion on

objects in PHP including how to create
instances and custom objects

• This will be followed by a discussion of
PEAR along with some examples as to how
the HTML_Template_IT package of PEAR
can aid us with formatting.

Objects in PHP – Page 3 of 46CSCI 2910 – Client/Server-Side Programming

Objects in PHP
• The concept of objects is the same across

different object-oriented programming
languages.

• There are, however, minor differences in
how a programmer references objects using
PHP.

Objects in PHP – Page 4 of 46CSCI 2910 – Client/Server-Side Programming

Creating a New PHP Object Instance

• Just like JavaScript, PHP uses the keyword
"new" to create a new instance of an object.

• Example: $_myinstance = new Object(args);
• Syntax elements:

– Just like variables, the name used to identify the
instance needs to begin with '$'.

– Many objects need arguments (the "args" part
of the above example) in order to create a new
instance. These are passed to a function called
a constructor which initializes the instance.

Objects in PHP – Page 5 of 46CSCI 2910 – Client/Server-Side Programming

Referring to Components
of a PHP Instance

• In JavaScript, we used periods to
delimit/separate the elements of an object
hierarchy. For example:

document.writeln("Hello, World!");

• In PHP, the operator "->" is used to
delimit/separate the elements of an object
hierarchy. For example:

$object_name->object_function();

• The above example refers to a function (note
the parenthesis). The same format is used for
properties too, i.e., $object_name->property;

Objects in PHP – Page 6 of 46CSCI 2910 – Client/Server-Side Programming

Defining a Class
• A class is the definition used to create an

instance.
• A class definition defines the class' name, its

variables, and functions.
• A class definition can also contain functions

used to initialize instances (constructors) and
remove them (destructors).

2

Objects in PHP – Page 7 of 46CSCI 2910 – Client/Server-Side Programming

Format of a Class Definition
<?php
// Basic format of a class definition

class ClassName
{
// Member variables

var $_variable1 = 0;
var $_variable2 = "String";

// Member functions
function classFunction($_arg1 = 0, $_arg2)
{

// Function code goes here
}

}
?>

Objects in PHP – Page 8 of 46CSCI 2910 – Client/Server-Side Programming

Format of a Class Definition (continued)

• The keyword "class" followed by the class name is
used to start the definition. Curly brackets are
used to enclose all of the elements of the
definition.

• The keyword "var" is used to identify the class'
variables.

• Variables can be initialized. Every time a new
instance is created, the variables for that instance
are initialized to these values.

• Functions are defined normally, but when
contained within the curly brackets of the class,
become member functions of the class.

Objects in PHP – Page 9 of 46CSCI 2910 – Client/Server-Side Programming

Private Member Variables
• There are some cases when a class may not want

to have its variables accessible outside of the class
– Variables may be set up only for internal use within the

class' functions
– Variables may have certain restrictions on values that

must be enforced internally
• If a variable needs to be modified from outside the

class, a function can be provided to do so. For
example, instead of:

$_instance -> variable1 = 25;

use
$_instance -> updateVariable1(25);

Objects in PHP – Page 10 of 46CSCI 2910 – Client/Server-Side Programming

Private Member Variables
• To declare a variable as private, simply replace

the keyword "var" with the keyword "private" in
the variable declaration.

• Example:
private $_variable3 = 4.0;

• A class can also have private member
functions. In this case, declare the function by
putting the keyword "private" in front of the
function declaration.

• Private variables became available with PHP 5.

Objects in PHP – Page 11 of 46CSCI 2910 – Client/Server-Side Programming

Static Member Variables
• Each time an instance of a class is created, a

whole new set of variables and functions for
that instance is created along with it.

• It is possible to make it so that regardless of
the number of instances of a class, only a
single variable is created for that class.

• This allows all instances to share a single
variable.

• To do this, replace the keyword "var" with the
keyword "static" in the variable declaration.

• Static variables became available with PHP 5.

Objects in PHP – Page 12 of 46CSCI 2910 – Client/Server-Side Programming

Constructors
• When an instance is created, it may be

necessary to go through an initialization
process.

• This initialization process might be based on
arguments passed from the code creating the
instance.

• A function can be written for a class that is
automatically called whenever an instance for
that class is created. This is called a
constructor.

3

Objects in PHP – Page 13 of 46CSCI 2910 – Client/Server-Side Programming

Constructors (continued)
• A constructor has the same format as a regular

function except for the name.
• The name of a constructor in PHP 5 is

_ _construct(). (In PHP 4 it has the same name as
the class.)

• Example:
function _ _construct($_arg = 0)
{
// Code to initialize class

}

• Note: I have put a space between the underscores
to show there are two of them. No space is used.

Objects in PHP – Page 14 of 46CSCI 2910 – Client/Server-Side Programming

Destructors
• It is also possible that some housekeeping or

cleanup needs to be performed when an
instance is removed.

• In this case, a destructor function is
automatically called to close the instance.

• Destructors are only available in PHP 5.
• Unlike the constructor function, no arguments

can be passed to the destructor function.
• The name of a destructor is always

_ _destruct().

Objects in PHP – Page 15 of 46CSCI 2910 – Client/Server-Side Programming

Class Definition Example
class Person
{

var $full_name;
var $birthday;
var $gender;

// Print function to output person's data in HTML
function printPersonInHTML()
{

print "<p>{$this->full_name} is a ";
if(($this->gender == 'M')||($this->gender == 'm'))

print "male";
else

print "female";
print

" who was born on {$this->birthday}.</p>";
}

// Class continued on next slide

Objects in PHP – Page 16 of 46CSCI 2910 – Client/Server-Side Programming

Class Definition Example (continued)
// Constructor for PHP 5

function __construct($first_name, $last_name,
$gender, $birth_month,
$birth_day, $birth_year)

{
$month_list = array ("January", "February",

"March", "April", "May", "June",
"July", "August", "September",
"October", "November", "December");

$this->full_name = $first_name." ".$last_name;
$this->birthday =

$month_list[$birth_month-1]." ".
$birth_day.", ". $birth_year;

$this->gender = $gender;
}

}

Objects in PHP – Page 17 of 46CSCI 2910 – Client/Server-Side Programming

Class Definition Example (continued)

• The code to create an instance and call the
class function printPersonInHTML() looks
like this:
$person_1 = new Person("John", "Doe",

"m", 3, 24, 1974);

$person_1 -> printPersonInHTML();

• The output then will be:
John Doe is a male who was born on
March 24, 1974.

Objects in PHP – Page 18 of 46CSCI 2910 – Client/Server-Side Programming

Include Files in PHP
• Reasons to include or import an external file into a

PHP file.
– Allows sharing of common resources among multiple PHP

files.
– Simplifies a PHP file by encapsulating functionality.

• PHP uses a set of functions to include a file into a
script. (Note that since these functions are part of the
language construct, parenthesis are not required.)
– include(URL_str) – includes the file referenced by URL_str
– require(URL_str) – same as include() except that an error

during the include is fatal and will stop processing
– include_once(URL_str) – same as include() except that a

second include() is ignored.
– require_once(URL_str) – same as require() except that a

second require() is ignored.

4

Objects in PHP – Page 19 of 46CSCI 2910 – Client/Server-Side Programming

Include Files in PHP (continued)
• Examples:
<?php

require_once("file.php");
include 'file.php';
include 'http://www.mydomain.com/file.php';

?>

• Note that it is important to have the extension
.php on your included files. This forces them to
be processed with the PHP engine before
sending it to a client. It is a security issue.

Objects in PHP – Page 20 of 46CSCI 2910 – Client/Server-Side Programming

PHP Predefined Objects
• As with other languages, PHP has a number of

predefined objects and functions that provide access
to system resources.

• One package containing these objects and functions is
called the PHP Extension and Application Repository
or PEAR.

• It includes support for:
•Web services

•Image processing

•File handling

•Data validation

•Database access

•Payment processing
• PEAR was originally designed to support scripting for

HTML such as providing templates for documents and
platform independence.

Objects in PHP – Page 21 of 46CSCI 2910 – Client/Server-Side Programming

PEAR Overview
The following descriptions of PEAR are copied
from the pear.php.net website (source:
http://pear.php.net/manual/en/introduction.php):
– "A structured library of open-sourced code for PHP

users"
– "A system for code distribution and package

maintenance"
– "A standard style for code written in PHP"
– "The PHP Extension Community Library (PECL)"
– "A web site, mailing lists and download mirrors to

support the PHP/PEAR community"

Objects in PHP – Page 22 of 46CSCI 2910 – Client/Server-Side Programming

PEAR Components
• First, we need to make sure the server you're using

has PEAR installed and see which packages it has.
• At the Unix command prompt, type "pear list". The

output shown below is from Einstein:
Installed packages:
===================
Package Version State
Archive_Tar 1.3.2 stable
Console_Getopt 1.2 stable
HTML_Template_IT 1.1 stable
Net_UserAgent_Detect 2.0.1 stable
PEAR 1.4.11 stable
XML_RPC 1.2.2 stable

• We will be using the HTML_Template_IT package

Objects in PHP – Page 23 of 46CSCI 2910 – Client/Server-Side Programming

Using HTML Templates
• Throughout this course, templates have

been presented to offer a starting point for
your web page development.

• Templates simplify and stabilize the
development process by allowing the
programmer to avoid the tedious typing.

• PEAR allows programmers to separate the
HTML code from the PHP scripts.

• The PEAR package HTML_Template_IT is
what allows us to do that.

Objects in PHP – Page 24 of 46CSCI 2910 – Client/Server-Side Programming

Using HTML_Template_IT
• First of all, the use of templates requires two files:

– an HTML template with placeholders for values
– PHP code to insert values at the placeholders

• The HTML template looks just like a normal HTML
file except that there are additional tags to show
where the PHP script is to insert values.

• The PHP script determines the values that are to
be inserted into the HTML template at execution
time, and the resulting HTML output is sent to the
client.

5

Objects in PHP – Page 25 of 46CSCI 2910 – Client/Server-Side Programming

HTML_Template_IT Blocks
• The HTML template is divided into regions

called blocks.
• These blocks are used by PHP to identify the

region being processed.
• The format of a block is

<!-- BEGIN block_name -->
... block content ...
<!-- END block_name -->

• The name of a block can consist of upper and
lowercase letters, underscores and hyphens.
There can be no spaces in a block name.

Objects in PHP – Page 26 of 46CSCI 2910 – Client/Server-Side Programming

HTML_Template_IT Placeholders
• Placeholders are located within a block of the

HTML template to identify positions where the
PHP script will insert values

• The format of placeholder is
{placeholder_name}

• The placeholder name can consist of upper and
lowercase letters, underscores and hyphens.

• The placeholder name must be placed between
curly brackets without any spaces.

• Examples:
{page_title}
{menuitem-1}

Objects in PHP – Page 27 of 46CSCI 2910 – Client/Server-Side Programming

Sample HTML Template
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
lang="en">

<head>
<title>Simple XHTML Document</title>
</head>
<body>

<!-- BEGIN TITLE_BLOCK -->
<h1>{page_title}</h1>
<p>{page_intro}</p>

<!-- END TITLE_BLOCK -->
</body>
</html>

Objects in PHP – Page 28 of 46CSCI 2910 – Client/Server-Side Programming

Populating the Template
• PHP is then used to populate the template
• Associating a PHP script with an HTML template

involves seven steps:
1. Include the PEAR Integrated Template
2. Create a template object to be used by the PHP script

for function calls
3. Associate the template file with the object
4. Select a block to work with
5. Assign data to the placeholders
6. Parse (process) the block
7. Output the page

Objects in PHP – Page 29 of 46CSCI 2910 – Client/Server-Side Programming

Including the PEAR IT
• Including the PEAR Integrated Template is the same

as including any file. It is recommended that you use
the require_once() function.

• require_once() includes the specified file exactly once
during the execution of the script, i.e., it prevents
multiple includes.

• The file to include is IT.php which may appear in
different places on different servers.

• Einstein has IT.php in the folder
"/usr/local/lib/php/HTML/Template/"

• Code example:
require_once
("/usr/local/lib/php/HTML/Template/IT.php");

Objects in PHP – Page 30 of 46CSCI 2910 – Client/Server-Side Programming

Creating the Template Object
• Creating the template object is the same as

creating any object using a constructor
function.

• Code example:
$template = new
HTML_Template_IT("./template_folder");

• The argument for the constructor function is
the directory where the templates will be
found.

• The "./" points to the current folder while
"template_folder" identifies a sub-folder.

6

Objects in PHP – Page 31 of 46CSCI 2910 – Client/Server-Side Programming

Associate the Template File
• Now we need to associate a template file with

the template object. This is done with the
HTML_Template_IT function loadTemplatefile().

• Code example:
$template->
loadTemplatefile("template_01.tpl",
true, true);

• The first argument is the template file name
• The second and third arguments tell the script

how to handle undefined blocks and
placeholders.

Objects in PHP – Page 32 of 46CSCI 2910 – Client/Server-Side Programming

Selecting a Block
• Since there may be multiple blocks within the

template, the PHP script must identify which
block is being used.

• This is done with the HTML_Template_IT
function setCurrentBlock().

• Code example:
$template->
setCurrentBlock("TITLE_BLOCK");

Objects in PHP – Page 33 of 46CSCI 2910 – Client/Server-Side Programming

Assign Data to the Placeholders
• Once a block is selected, the placeholders

need to be populated.
• This is done using the HTML_Template_IT

function setVariable().
• Code example:
$template->setVariable("page_title",
"Hello, World!");

Objects in PHP – Page 34 of 46CSCI 2910 – Client/Server-Side Programming

Parsing/Processing the Block
• Once you are finished setting the values of a

block, it can be parsed or processed.
• This is done using the HTML_Template_IT

function parseCurrentBlock().
• Code example:
$template->parseCurrentBlock();

Objects in PHP – Page 35 of 46CSCI 2910 – Client/Server-Side Programming

Outputting the Page
• After you have finished processing all of the

blocks, the page must be output.
• This is done using the HTML_Template_IT

function show().
• Code example:
$template->show();

Objects in PHP – Page 36 of 46CSCI 2910 – Client/Server-Side Programming

Final PHP Script Using Templates
<?php
// Load PEAR's Integrated Template class into the script

require_once ("/usr/local/lib/php/HTML/Template/IT.php");
// Create a new template, and specify that the template files are in
// the subdirectory "template_folder"

$template = new HTML_Template_IT("./template_folder");
// Load the necessary template file

$template->loadTemplatefile("template_01.tpl", true, true);
// Identify which block of the template we're working with

$template->setCurrentBlock("TITLE_BLOCK");
// Assign the data values to the template placeholders

$template->setVariable("page_title", "Hello, World!");
$template->setVariable("page_intro", "Our first PHP script using HTML templates!");

// Process the current block
$template->parseCurrentBlock();

// Output the web page
$template->show();

?>

7

Objects in PHP – Page 37 of 46CSCI 2910 – Client/Server-Side Programming

The Result
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
lang="en">

<head>

<title>Simple XHTML Document</title>
</head>
<body>

<h1>Hello, World!</h1>
<p>Our first PHP script using HTML templates!</p>

</body>
</html>

Objects in PHP – Page 38 of 46CSCI 2910 – Client/Server-Side Programming

Loops with Templates
• By parsing the blocks properly, a loop can be used to

generate HTML code.
• For example, we can use a loop to generate

successive rows of a table.
• The process would be something like this:

– Print the start tag for the table
– Begin a block
– Print a row with placeholders for the PHP values
– End the block
– Print the end tag for the table

• Executing the block multiple times will create multiple
rows

Objects in PHP – Page 39 of 46CSCI 2910 – Client/Server-Side Programming

Loops with Templates (continued)
<body>
<table align="center" border="2"
cellpadding="5">
<!-- BEGIN TABLE_HEADING -->

<tr><td>{column1}</td>
<td>{column2}</td></tr>

<!-- END TABLE_HEADING -->
<!-- BEGIN TABLE_BLOCK -->

<tr><td>{column1}</td>
<td>{column2}</td></tr>

<!-- END TABLE_BLOCK -->
</table>

</body>

Objects in PHP – Page 40 of 46CSCI 2910 – Client/Server-Side Programming

Loops with Templates (continued)
• As far as using this template with a PHP script

is concerned, the PHP script will need to insert
the values into the placeholders once for each
execution of the loop

• The process inside the PHP loop would be
something like this:
– Set the current block
– Set the values for the different placeholders
– Parse the current block

• Each time the loop was executed, a new row
would be created.

Objects in PHP – Page 41 of 46CSCI 2910 – Client/Server-Side Programming

Loops with Templates (continued)
<?php

require_once ("/usr/local/lib/php/HTML/Template/IT.php");
$template = new HTML_Template_IT("./template_folder");
$template->loadTemplatefile("template_02.tpl", true, true);

// Create table column headings
$template->setCurrentBlock("TABLE_HEADING");
$template->setVariable("column1", "I");
$template->setVariable("column2", "I²");
$template->parseCurrentBlock();

// Create the 10 rows one at a time
for ($i = 0; $i <10; $i++)
{

$template->setCurrentBlock("TABLE_BLOCK");
$template->setVariable("column1", $i);
$template->setVariable("column2", ($i*$i));
$template->parseCurrentBlock();

}
$template->show();

?>

Objects in PHP – Page 42 of 46CSCI 2910 – Client/Server-Side Programming

Result
Okay, so it isn't a beautiful
example, but it is a beginning.
Imagine how much we could
help the output of the
database query outputs using
this sort of tool.

8

Objects in PHP – Page 43 of 46CSCI 2910 – Client/Server-Side Programming

Printing MySQL Query Results with
Templates

If we replace the code from the earlier example with the
results from fetching each record from a MySQL query, we
could significantly improve the format of the output.
<body>
<table align="center" border="0" cellpadding="5">
<!-- BEGIN TABLE_BLOCK -->

<tr>
<td>{column1}</td>
<td>{column2}</td>
<td>{column3}</td>
<td>{column4}</td>
</tr>

<!-- END TABLE_BLOCK -->
</table>

</body>

Objects in PHP – Page 44 of 46CSCI 2910 – Client/Server-Side Programming

Outputting PHP MySQL Results
<?php
// First, connect to the template we're going to use

require_once ("/usr/local/lib/php/HTML/Template/IT.php");
$template = new HTML_Template_IT("./template_folder");
$template->loadTemplatefile("template_03.tpl", true, true);

// Next, get the result of a database query
$c = mysql_connect ("localhost", "zxyx999", "12345");
mysql_select_db("zxyx999", $c);
$result = mysql_query("SELECT DEPT, COURSE, SECTION, TITLE from timetable", $c);

// Go through the records prin
while($record = mysql_fetch_array($result, MYSQL_ASSOC))
{

$template->setCurrentBlock("TABLE_BLOCK");
$template->setVariable("column1", $record[DEPT]);
$template->setVariable("column2", $record[COURSE]);
$template->setVariable("column3", $record[SECTION]);
$template->setVariable("column4", $record[TITLE]);
$template->parseCurrentBlock();

}
mysql_close ($c);
$template->show();

?>

Objects in PHP – Page 45 of 46CSCI 2910 – Client/Server-Side Programming

Result
• This makes

formatting a great
deal easier. In
addition, a single
template can serve
multiple PHP
scripts.

Objects in PHP – Page 46 of 46CSCI 2910 – Client/Server-Side Programming

More on loadTemplatefile()
• We haven't yet discussed two of the arguments of

loadTemplatefile().
• Our code example was
$template->
loadTemplatefile("template_01.tpl", true,
true);

• The first argument identifies the template file.
• The second argument is set to "true" if you want

the PHP engine to not print out blocks from the
template that were not used in the script.

• The third argument is set to "true" if you want the
PHP engine to not print out placeholders that
have not had values assigned to them.

