
 Page 1

Error Detection and Correction

This worksheet is meant to describe the processes used to detect and correct errors at the bit level.
After covering this material, you should be able to design a system to correct a single bit error and
detect if a double bit error has occurred in any size word.

A Poor Solution:

One possible solution, albeit a rather poor one, is to simply use a parity bit as the check value.
• An odd number of ones in the data value check value=1
• An even number of ones in the data value check value=0
• Limitations! Can only detect odd numbers of bit errors (even numbers of bit errors would test

okay), and it provides no means for error correction

A Better Solution (Hamming Code):

Divide the stored data value into overlapping groups, each with its own parity bit. Each bit of the data
value would belong to a unique set of groups.

• A flipped bit would generate a parity error in every group it was a member of.
• By seeing which groups had erroneous parity bits and matching those groups to the bit that

belonged only to those groups, we could detect and correct the flipped bit.
• Limitation! Double bit errors would still cause problems.

Example: Create an error detection scheme for a 4-bit value consisting of the bits D3, D2, D1, and D0.

Step 1: Design a set of bit groups for the four bits D3, D2, D1, and D0 such that each bit belongs to a
unique set of groups. For example:

Step 2: Generate the check value as the group of parity bits P0, P1, and P2.

Step 3: Upon retrieval, generate a new check value and see if P0’ = P0, P1’ = P1, and P2’ = P2. If there
are differences, the bits that are different identify which data bit (or sometimes which parity
bit) was flipped. (The “primes” indicate the new check values.)

PROCESS:
A. Run an algorithm on a piece of data before

it is stored to generate a check value.
B. Store the check value with the data.
C. When the piece of data is retrieved, run

the algorithm on the data again to
generate a second check value. Compare
the second check value with the first. If
they are equal, then no error occurred. A
difference indicates an error.

DATA IN CHECK VALUE
GENERATOR

CHECK
VALUE

MEMORY
STORE CHECK VALUE &

DATA TOGETHER

CHECK VALUE
GENERATOR

OLD CHECK
VALUE

DATA

NEW CHECK
VALUE

IF CHECK
VALUES

ARE
EQUAL, NO

ERROR

Sample Group Assignment:
Group 2: D3, D1, and D0
Group 1: D3, D2, and D0
Group 0: D3, D2, and D1

Parity Bits:
P2 = D3 ⊕ D1 ⊕ D0
P1 = D3 ⊕ D2 ⊕ D0
P0 = D3 ⊕ D2 ⊕ D1

D3 belongs to groups 0, 1, and 2
D2 belongs to groups 0 and 1
D1 belongs to groups 0 and 2
D0 belongs to groups 1 and 2

Memory Details Page 2
Example (continued): Let’s continue the example by putting some data into the system. Try to store
the binary value 1011.

Now assume D1 has flipped during storage. When the data is retrieved, we get:

Since the parity errors are in groups 0 and 2, then the bit that flipped must be in exactly groups 0 and
2. This indicates data bit D1. Therefore, flip D1 from a 0 back to a 1, and you have corrected data.

The above example can sometimes be better explained using a Venn diagram. The circle A
represents group 0; the circle B represents group 1, and the circle C represents group 2. The sum of
ones in a circle must be an even number. Note that the group membership for the data bits matches
that contained in each circle.

Note that it is possible to have an error in the parity bits. In this case, since each parity bit belongs to
only one group, then it should be easy to identify the error as a parity bit.

PROBLEM: What happens if there are two errors? In the figures below, both D2 and D3 have flipped.
This ends up looking like a parity error only in circle C implying that it is P2 that’s in error!

An Even Better Solution:

We need to correct the problem with double errors in our error correction scheme. We can detect
that an error has occurred, but we cannot correct it properly. We can solve this problem by adding
one more bit that acts as a parity check for all seven data and parity bits. If after we perform a
correction the parity bit for the whole diagram is wrong, then we know that a double error has
occurred. We cannot recover from a double error, but at least we won’t correct it wrongly.

D3 = 1
D2 = 0
D1 = 1
D0 = 1

Generate Parity Bits:
P2 = D3 ⊕ D1 ⊕ D0 = 1 ⊕ 1 ⊕ 1 = 1
P1 = D3 ⊕ D2 ⊕ D0 = 1 ⊕ 0 ⊕ 1 = 0
P0 = D3 ⊕ D2 ⊕ D1 = 1 ⊕ 0 ⊕ 1 = 0

Values Stored in Memory:
Data Parity

D3 D2 D1 D0 P2 P1 P0
1 0 1 1 1 0 0

Generate NEW Parity Bits:
P2‘ = D3 ⊕ D1 ⊕ D0 = 1 ⊕ 0 ⊕ 1 = 0
P1‘ = D3 ⊕ D2 ⊕ D0 = 1 ⊕ 0 ⊕ 1 = 0
P0‘ = D3 ⊕ D2 ⊕ D1 = 1 ⊕ 0 ⊕ 0 = 1

Values Retrieved from Memory:
Data Parity

D3 D2 D1 D0 P2 P1 P0
1 0 0 1 1 0 0

Parity errors in groups
0 & 2. (P2’ ≠ P2 and P0’
≠ P0) D1 is only bit in
exactly those groups.

P0 P1

P2

D1 D0
D3
D2

Original Grouping

C

A B
0 0

1

1 11
0

Data/Parity Stored

C

A B
0 0

1

0 1
1
0

Parity error in A & C

C

A B

0 0

1

1 1 1
0

Data/Parity Stored

C

A B
0 0

1

1 10
1

D2 and D3 in error

C

A B
0 0

0

1 1 0
1

Attempted correction

C

A B

Memory Details Page 3
Let’s pick up where the previous example left off by adding a parity bit (in the lower right corner of the
Venn diagrams below) that is the parity of the seven stored bits, D3, D2, D1, D0, P2, P1, and P0. This
additional parity bit is stored with the rest of the data.

Notice that in the third figure (the one all of the way to the right), the parity is wrong AFTER the
correction. This means the error was not a single bit error and it will remain uncorrectable.

Syndrome Word: Automating the Process

To automate the process of determining which
groups have parity errors, we need to compare
each stored parity bit with the corresponding
parity bit generated after retrieving the data,
i.e., compare Pn with Pn’. The diagram to the
right represents how this is done using the
exclusive-or to generate S2, S1, and S0 for a
system with three parity bits such as the one
we have in the previous example.

The book calls the combination of all of the Sn bits the syndrome word. The value of a syndrome
word identifies the state of the data:

• A syndrome word of all zeros indicates no error has occurred.
• A syndrome word with a single bit set to one indicates that one of the parity bits is in error.
• A syndrome word with two or more bits set to one indicates that one of the data bits is in error.

Continuing our previous example of four data bits and three parity bits, the following list shows how
each possible syndrome word (S2 - S1 - S0) corresponds to a data or parity error.

0002 No error 0102 P1 in error 1002 P2 in error 1102 D0 in error
0012 P0 in error 0112 D2 in error 1012 D1 in error 1112 D3 in error

Note that there are three bits in the syndrome word which makes for 23 = 8 possible values. This
corresponds to the 1 error-free condition, the 3 parity error conditions, and the 4 data error conditions.

Expanding to More than Four Bits

So how can this method be expanded to more than four data bits? The answer is to find out how
many groups and therefore parity bits are needed to have each data bit be a member of a unique set
of groups. The answer lies in the syndrome word which must be capable of identifying each possible
error condition. (Note that we’ll add the final additional parity bit for double error detection later.)

0 0

1

1 11
0

Data/Parity Stored

C

A B

0

0 0

1

1 10
1

D2 and D3 in error

C

A B

0

0 0

0

1 1 0
1

Attempted correction

C

A B

0

P2

P1

P0

P2’
P1’
P0’

Compare

Compare

Compare

S2 = P2 ⊕ P2’
 P2 = P2’ S2 = 0
 P2 ≠ P2’ S2 = 1

S1 = P1 ⊕ P1’
 P1 = P1’ S1 = 0
 P1 ≠ P1’ S1 = 1

S0 = P0 ⊕ P0’
 P0 = P0’ S0 = 0
 P0 ≠ P0’ S0 = 1

Memory Details Page 4
Possible values of the syndrome word for M data bits using K parity bits:

• 1 pattern for the error-free condition: all zeros
• K patterns to represent errors in each of the K parity bits: exactly one bit set to 1
• M patterns to represent errors in each of the M data bits: two or more bits set to 1

Since there are K parity bits, the syndrome word must also have K bits. Therefore, there are 2K
possible patterns of ones and zeros in the syndrome word. Since there must be at least as many
syndrome words as there are conditions listed above, we get the following expression:

2K > 1 + K + M

2K – 1 > K + M

The table shown to the right lists some
of the numbers of parity bits required for
specific numbers of data bits to perform
single-error correction (SEC). To obtain
double error detection (DED), a single
additional bit is required.

An Example with More Bits

Now let’s design an SEC/DED system for 8 data bits. Using the previous table we see that 4 parity
bits are going to be required for SEC. Let’s begin by assigning the bit patterns for each of the
possible syndrome words by doing the following.

• Begin by assigning all zeros to error-free condition
• Identify each pattern where exactly one bit set to 1 and use those to identify parity errors
• Assign each of the 8 remaining data bits to one of the remaining syndrome word patterns

00002 No errors 01002 P2 in error 10002 P3 in error 11002 D7 in error
00012 P0 in error 01012 D1 in error 10012 D4 in error 11012 Not used
00102 P1 in error 01102 D2 in error 10102 D5 in error 11102 Not used
00112 D0 in error 01112 D3 in error 10112 D6 in error 11112 Not used

A change in parity bit Pn due to an error is going to set the corresponding position in the syndrome
word to a 1. For example, if P2 ≠ P2’, then the syndrome word is going to have bit S2 set, i.e., 01002.
Going back to our description of the data bits belonging to groups, there are four groups represented
by the parity bits P0, P1, P2, and P3. We can figure out which groups each of the data bits belongs to
by seeing which ones contain which parity bits in their syndrome word. For example D0 has bits P0
and P1 set. Therefore, it belongs to groups 0 and 1.

• In group 0 (represented by P0) we have data bits D0, D1, D3, D4 and D6.
• In group 1 (represented by P1) we have data bits D0, D2, D3, D5 and D6.
• In group 2 (represented by P2) we have data bits D1, D2, D3, and D7.
• In group 3 (represented by P3) we have data bits D4, D5, D6, and D7.

This gives us our parity expressions for P0, P1, P2, and P3.
• P0 = D0 ⊕ D1 ⊕ D3 ⊕ D4 ⊕ D6
• P1 = D0 ⊕ D2 ⊕ D3 ⊕ D5 ⊕ D6
• P2 = D1 ⊕ D2 ⊕ D3 ⊕ D7
• P3 = D4 ⊕ D5 ⊕ D6 ⊕ D7

Number of
data bits (M)

Number of
parity bits (K)

K + M 2K – 1

4 3 7 7
8 4 12 15
16 5 21 31
32 6 38 63
64 7 71 127
128 8 136 255

