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Error Detection and Correction 

This worksheet is meant to describe the processes used to detect and correct errors at the bit level.  
After covering this material, you should be able to design a system to correct a single bit error and 
detect if a double bit error has occurred in any size word. 

 

 

 

 

 

 

 

A Poor Solution: 

One possible solution, albeit a rather poor one, is to simply use a parity bit as the check value.   
• An odd number of ones in the data value  check value=1 
• An even number of ones in the data value  check value=0 
• Limitations! Can only detect odd numbers of bit errors (even numbers of bit errors would test 

okay), and it provides no means for error correction 

A Better Solution (Hamming Code): 

Divide the stored data value into overlapping groups, each with its own parity bit.  Each bit of the data 
value would belong to a unique set of groups. 

• A flipped bit would generate a parity error in every group it was a member of. 
• By seeing which groups had erroneous parity bits and matching those groups to the bit that 

belonged only to those groups, we could detect and correct the flipped bit. 
• Limitation! Double bit errors would still cause problems. 

Example:  Create an error detection scheme for a 4-bit value consisting of the bits D3, D2, D1, and D0. 

Step 1: Design a set of bit groups for the four bits D3, D2, D1, and D0 such that each bit belongs to a 
unique set of groups.  For example: 

 

 

 
Step 2: Generate the check value as the group of parity bits P0, P1, and P2. 

Step 3: Upon retrieval, generate a new check value and see if P0’ = P0, P1’ = P1, and P2’ = P2. If there 
are differences, the bits that are different identify which data bit (or sometimes which parity 
bit) was flipped. (The “primes” indicate the new check values.) 

PROCESS: 
A. Run an algorithm on a piece of data before 

it is stored to generate a check value.  
B. Store the check value with the data. 
C. When the piece of data is retrieved, run 

the algorithm on the data again to 
generate a second check value.  Compare 
the second check value with the first.  If 
they are equal, then no error occurred.  A 
difference indicates an error. 
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Sample Group Assignment: 
Group 2: D3, D1, and D0 
Group 1: D3, D2, and D0 
Group 0: D3, D2, and D1 

Parity Bits: 
P2 = D3 ⊕ D1 ⊕ D0 
P1 = D3 ⊕ D2 ⊕ D0 
P0 = D3 ⊕ D2 ⊕ D1 

D3 belongs to groups 0, 1, and 2 
D2 belongs to groups 0 and 1 
D1 belongs to groups 0 and 2 
D0 belongs to groups 1 and 2 
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Example (continued): Let’s continue the example by putting some data into the system. Try to store 
the binary value 1011. 

 

 

 
Now assume D1 has flipped during storage.  When the data is retrieved, we get: 

 

 

 
Since the parity errors are in groups 0 and 2, then the bit that flipped must be in exactly groups 0 and 
2. This indicates data bit D1. Therefore, flip D1 from a 0 back to a 1, and you have corrected data.  

The above example can sometimes be better explained using a Venn diagram.  The circle A 
represents group 0; the circle B represents group 1, and the circle C represents group 2.  The sum of 
ones in a circle must be an even number.  Note that the group membership for the data bits matches 
that contained in each circle. 

 

 

 

 

Note that it is possible to have an error in the parity bits.  In this case, since each parity bit belongs to 
only one group, then it should be easy to identify the error as a parity bit. 

PROBLEM: What happens if there are two errors?  In the figures below, both D2 and D3 have flipped.  
This ends up looking like a parity error only in circle C implying that it is P2 that’s in error! 

 

 

 

 
 
 
An Even Better Solution: 

We need to correct the problem with double errors in our error correction scheme.  We can detect 
that an error has occurred, but we cannot correct it properly. We can solve this problem by adding 
one more bit that acts as a parity check for all seven data and parity bits. If after we perform a 
correction the parity bit for the whole diagram is wrong, then we know that a double error has 
occurred.  We cannot recover from a double error, but at least we won’t correct it wrongly. 

D3 = 1 
D2 = 0 
D1 = 1 
D0 = 1 

Generate Parity Bits: 
P2 = D3 ⊕ D1 ⊕ D0 = 1 ⊕ 1 ⊕ 1 = 1 
P1 = D3 ⊕ D2 ⊕ D0 = 1 ⊕ 0 ⊕ 1 = 0 
P0 = D3 ⊕ D2 ⊕ D1 = 1 ⊕ 0 ⊕ 1 = 0 

Values Stored in Memory: 
Data Parity 

D3 D2 D1 D0 P2 P1 P0 
1 0 1 1 1 0 0 

Generate NEW Parity Bits: 
P2‘ = D3 ⊕ D1 ⊕ D0 = 1 ⊕ 0 ⊕ 1 = 0 
P1‘ = D3 ⊕ D2 ⊕ D0 = 1 ⊕ 0 ⊕ 1 = 0 
P0‘ = D3 ⊕ D2 ⊕ D1 = 1 ⊕ 0 ⊕ 0 = 1 

Values Retrieved from Memory: 
Data Parity 

D3 D2 D1 D0 P2 P1 P0 
1 0 0 1 1 0 0 

Parity errors in groups 
0 & 2. (P2’ ≠ P2 and P0’ 
≠ P0)  D1 is only bit in 
exactly those groups. 

P0 P1 

P2 

D1 D0 
D3 
D2 

Original Grouping 

C 

A B 
0 0

1

1 11
0

Data/Parity Stored 

C

A B
0 0 

1

0 1 
1
0

Parity error in A & C 

C

A B 

0 0 

1 

1 1 1 
0 

Data/Parity Stored 

C 

A B 
0 0

1

1 10
1

D2 and D3 in error 

C

A B
0 0 

0

1 1 0
1

Attempted correction 

C

A B 



Memory Details  Page 3 
Let’s pick up where the previous example left off by adding a parity bit (in the lower right corner of the 
Venn diagrams below) that is the parity of the seven stored bits, D3, D2, D1, D0, P2, P1, and P0.  This 
additional parity bit is stored with the rest of the data. 

 
 
 
 
 
 
 
 
Notice that in the third figure (the one all of the way to the right), the parity is wrong AFTER the 
correction.  This means the error was not a single bit error and it will remain uncorrectable. 
 
Syndrome Word: Automating the Process 

To automate the process of determining which 
groups have parity errors, we need to compare 
each stored parity bit with the corresponding 
parity bit generated after retrieving the data, 
i.e., compare Pn with Pn’.  The diagram to the 
right represents how this is done using the 
exclusive-or to generate S2, S1, and S0 for a 
system with three parity bits such as the one 
we have in the previous example. 
 
The book calls the combination of all of the Sn bits the syndrome word. The value of a syndrome 
word identifies the state of the data: 

• A syndrome word of all zeros indicates no error has occurred.  
• A syndrome word with a single bit set to one indicates that one of the parity bits is in error. 
• A syndrome word with two or more bits set to one indicates that one of the data bits is in error. 

 
Continuing our previous example of four data bits and three parity bits, the following list shows how 
each possible syndrome word (S2 - S1 - S0) corresponds to a data or parity error. 
 

0002  No error 0102  P1 in error 1002  P2 in error 1102  D0 in error
0012  P0 in error 0112  D2 in error 1012  D1 in error 1112  D3 in error

 
Note that there are three bits in the syndrome word which makes for 23 = 8 possible values.  This 
corresponds to the 1 error-free condition, the 3 parity error conditions, and the 4 data error conditions. 
 
Expanding to More than Four Bits 

So how can this method be expanded to more than four data bits? The answer is to find out how 
many groups and therefore parity bits are needed to have each data bit be a member of a unique set 
of groups.  The answer lies in the syndrome word which must be capable of identifying each possible 
error condition.  (Note that we’ll add the final additional parity bit for double error detection later.) 
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S2 = P2 ⊕ P2’ 
 P2 = P2’  S2 = 0 
 P2 ≠ P2’  S2 = 1 

S1 = P1 ⊕ P1’ 
 P1 = P1’  S1 = 0 
 P1 ≠ P1’  S1 = 1 

S0 = P0 ⊕ P0’ 
 P0 = P0’  S0 = 0 
 P0 ≠ P0’  S0 = 1 
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Possible values of the syndrome word for M data bits using K parity bits: 

• 1 pattern for the error-free condition: all zeros 
• K patterns to represent errors in each of the K parity bits: exactly one bit set to 1 
• M patterns to represent errors in each of the M data bits: two or more bits set to 1 

Since there are K parity bits, the syndrome word must also have K bits.  Therefore, there are 2K 
possible patterns of ones and zeros in the syndrome word.  Since there must be at least as many 
syndrome words as there are conditions listed above, we get the following expression: 

2K > 1 + K + M 

2K – 1 > K + M 

The table shown to the right lists some 
of the numbers of parity bits required for  
specific numbers of data bits to perform 
single-error correction (SEC).  To obtain 
double error detection (DED), a single  
additional bit is required. 

An Example with More Bits 

Now let’s design an SEC/DED system for 8 data bits.  Using the previous table we see that 4 parity 
bits are going to be required for SEC.  Let’s begin by assigning the bit patterns for each of the 
possible syndrome words by doing the following.  

• Begin by assigning all zeros to error-free condition 
• Identify each pattern where exactly one bit set to 1 and use those to identify parity errors 
• Assign each of the 8 remaining data bits to one of the remaining syndrome word patterns 

00002  No errors 01002  P2 in error 10002  P3 in error 11002  D7 in error
00012  P0 in error 01012  D1 in error 10012  D4 in error 11012  Not used 
00102  P1 in error 01102  D2 in error 10102  D5 in error 11102  Not used 
00112  D0 in error 01112  D3 in error 10112  D6 in error 11112  Not used 

 
A change in parity bit Pn due to an error is going to set the corresponding position in the syndrome 
word to a 1.  For example, if P2 ≠ P2’, then the syndrome word is going to have bit S2 set, i.e., 01002. 
Going back to our description of the data bits belonging to groups, there are four groups represented 
by the parity bits P0, P1, P2, and P3.  We can figure out which groups each of the data bits belongs to 
by seeing which ones contain which parity bits in their syndrome word.  For example D0 has bits P0 
and P1 set.  Therefore, it belongs to groups 0 and 1. 

• In group 0 (represented by P0) we have data bits D0, D1, D3, D4 and D6. 
• In group 1 (represented by P1) we have data bits D0, D2, D3, D5 and D6. 
• In group 2 (represented by P2) we have data bits D1, D2, D3, and D7. 
• In group 3 (represented by P3) we have data bits D4, D5, D6, and D7. 

This gives us our parity expressions for P0, P1, P2, and P3. 
• P0 = D0 ⊕ D1 ⊕ D3 ⊕ D4 ⊕ D6 
• P1 = D0 ⊕ D2 ⊕ D3 ⊕ D5 ⊕ D6 
• P2 = D1 ⊕ D2 ⊕ D3 ⊕ D7 
• P3 = D4 ⊕ D5 ⊕ D6 ⊕ D7 

Number of 
data bits (M)

Number of  
parity bits (K) 

K + M 2K – 1

4 3 7 7 
8 4 12 15 
16 5 21 31 
32 6 38 63 
64 7 71 127 
128 8 136 255 


