Points missed:	Student's Name:	
		

Total score: ____/100 points

East Tennessee State University – Department of Computer and Information Sciences CSCI 2710 (Tarnoff) – Discrete Structures TEST 2 for Spring Semester, 2005

Read this before starting!

- This test is closed book and closed notes
- You may *NOT* use a calculator
- All answers must have a box drawn around them. This is to aid the grader (who might not be me!) Failure to do so might result in no credit for answer.
- If you perform work on the back of a page in this test, indicate that you have done so in case the need arises for partial credit to be determined.
- Statement regarding academic misconduct from Section 5.7 of the East Tennessee State University Faculty Handbook, June 1, 2001:

"Academic misconduct will be subject to disciplinary action. Any act of dishonesty in academic work constitutes academic misconduct. This includes plagiarism, the changing of falsifying of any academic documents or materials, cheating, and the giving or receiving of unauthorized aid in tests, examinations, or other assigned school work. Penalties for academic misconduct will vary with the seriousness of the offense and may include, but are not limited to: a grade of 'F' on the work in question, a grade of 'F' of the course, reprimand, probation, suspension, and expulsion. For a second academic offense the penalty is permanent expulsion."

A short list of some tautologies:

1.
$$(p \land q) \Rightarrow p$$

3.
$$p \Rightarrow (p \lor q)$$

5.
$$\sim p \Rightarrow (p \Rightarrow q)$$

7.
$$((p \Rightarrow q) \land p) \Rightarrow q$$

9.
$$((p \Rightarrow q) \land \sim q) \Rightarrow \sim p$$

2.
$$(p \land q) \Rightarrow q$$

4.
$$q \Rightarrow (p \lor q)$$

6.
$$\sim (p \Rightarrow q) \Rightarrow p$$

8.
$$((p \lor q) \land \sim p) \Rightarrow q$$

10.
$$((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$$

Mathematical induction:

If $P(n_0)$ is true and assuming P(k) is true implies P(k+1) is true, then P(n) is true for all $n > n_0$

Permutations and Combinations:

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$
 $_{n}C_{r} = \frac{n!}{r!(n-r)!}$

Properties of operations for propositions

Commutative Properties

1.
$$p \lor q \equiv q \lor p$$

2.
$$p \wedge q \equiv q \wedge p$$

Associative Properties

3.
$$p \lor (q \lor r) \equiv (p \lor q) \lor r$$

4.
$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

Distributive Properties

5.
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

6.
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

Idempotent Properties

7.
$$p \lor p \equiv p$$

8.
$$p \wedge p \equiv p$$

Properties of Negation

9.
$$\sim (\sim p) \equiv p$$

10.
$$\sim$$
($p \lor q$) \equiv (\sim p) \land (\sim q)

11.
$$\sim (p \wedge q) \equiv (\sim p) \vee (\sim q)$$

Short answers – 2 points each unless otherwise noted

Fo	problems 1 through 4, indicate whether	r the phrase	is a st	atement or not.	
1.	"Does class begin at 9:45 AM?"			☐ Statement	☑ Not a statement
2.	"5 is greater than 25."				☐ Not a statement
3.	"Read the section before coming to cla	☐ Statement	■ Not a statement		
4.	"It snowed more than usual this past Fe	ebruary."			☐ Not a statement
5.	Give the negation of the statement "24	≤ 5." 24	> 5	7	
6.	Give the negation of the statement "I w	vill exercise	and ea	t right." (3 points)	
	This problem is based on DeMorgan's statements is the OR of the negation of the answer is "I will not exercise OR I	each of the	staten	nents. $(\sim (p \land q) \equiv (\sim p)$	
Foi	problems 7 and 8, find the truth value	of each prop	ositio	n if p is false and q and	d <i>r</i> are true.
7.	$p \lor \sim q$	Answer: _	false	∨ ~true = false ∨ false	e = false
8.	$\sim (p \vee r) \wedge q$	Answer: _	~(fal	$se \lor true) \land true = false$	$se \wedge true = false$
	problems 9 and 10, convert the sentend enectives if p: I drove; q: I found parkin	_	_		, r, and logical
9.	I am on time and I found parking.	Answer	::	$r \wedge q$	
10.	I am on time if and only if I don't driv	e. Answer	:	<i>r</i> ⇔ ~ <i>p</i>	
Eac the	ch of the following six arguments uses of heading, "a short list of some tautologies s used from this list <i>by entering a value</i>	one of the tar es.") For ea	utolog ch of t	ies listed on the covers he four arguments, ide	sheet. (See table under
11.	Either this is easy or I studied This isn't easy I must have studied		12.	If I bought a Model T I bought a Model T My Model T is black	<u> </u>
	Answer: <u>8</u>			Answer:	_
13.	If I work hard, I will succeed I didn't succeed I must not have worked hard		14.	After March 31, ETS The heat is still on at It must be before Ma	ETSU
	Answer:9			Answer:9	-
15.	It is cold and it is snowing It is snowing		16.	It's hot in here Either its hot in here	or I'm tired
	Answer 1 or 2			Answer: 3 or 1	

For the next four arguments, indicate which are valid and which are invalid.

17.	Casey is the name of I only own dogs for Casey must be a dog	pets	18.	If you are drive If I am walking I'm not on time	g, then I am	on time	
	▼ Valid	☐ Invalid		▼ Valid		Invalid	
19.	If I win the lottery, I If I invest wisely, I I am rich, therefore,	will be rich	20.	If I live in DC, Driving is a ha I must live in I	ssle	a hassle	_
	□ Valid	✓ Invalid		□ Valid	M	Invalid	
	 dog. In 18, this is the t In 19, the argume is <i>not</i> a tautology millions. In 20, the argume 	the name of my per autology $((p \Rightarrow q) \land q)$ ent is $(p \Rightarrow q) \land (q \Rightarrow q)$. Another way of lent is $(p \Rightarrow q) \land q \Rightarrow q$ cample, I could live	$(q \Rightarrow r)) \Rightarrow (p \Rightarrow r) \Rightarrow (r \Rightarrow p)$ ooking at it is the p . Do the truth	\Rightarrow r). Do the truth ta at I could be rice that the table and you will be reconstructed.	ble and you h because I will see tha	ı will se inherite	e that this
Sele	following seven prob ct the formula, n ^r , _n I identify the values o	P_r , ${}_nC_r$, or ${}_{(n+r-1)}C_r$,	that will comput				
orde dupl ${}_{n}C_{r}$,	inswer these problems red/unordered and du icates allowed, n^r , or or unordered with duber of items in the set	plicates allowed/du lered with no duplic plicates allowed, (n+	plicates not allocates allowed, n_{r-1} C_r . From the	wed. Each situate P_r , unordered were, it's just a material P_r	ation is eith ith no dupli atter of setti	er order cates along <i>n</i> to the second cates along to the second cate of the second cate	ed with lowed,
21. 0	Compute the number	of possible license	plates with 6 dig	gits that can be e	ither letters	or num	bers.
	a.) n^r b.) ${}_{n}P_{n}$	$c.$) $_{n}C_{r}$,	d.) $_{(n+r-1)}C_r$	<i>n</i> =	<u>36</u>	r =	<u>6</u>
	Compute the number colored marbles.	of combinations of	5 marbles you c	ould pull from a	bag contai	ning 10	different
	a.) n^r b.) ${}_{n}P_{n}$	$_{r}$ (c.) $_{n}C_{r}$,	d.) $_{(n+r-1)}C_r$	<i>n</i> =	<u>10</u>	r =	<u>5</u>
23. 1	How many subsets are	e there of the set A	$= \{a, b, c, d, e\}$	•			
t t	This is a tricky one. Venot a member of the subsection of the subs	ubset. This can be 111 would represen or 10100 would rep	represented with t the subset that resent the subset	n a five digit bin contained all ele	ary number ements of <i>A</i>	f. For ex	cample, a, b, c, d,
		$_{r}$ c.) $_{n}$ C $_{r}$,		$n = _$	2	r =	<u>5</u>

	b.) $_{n}P_{r}$	c.) ${}_{n}C_{r}$,	d.) $_{(n+r-1)}C_r$	<i>n</i> = <u>16</u>	_ r =	<u>5</u>	
25. How many shades of color can be created by mixing 5 parts from red, green, and blue?							
a.) <i>n</i> ^r	b.) $_{n}P_{r}$	c.) ${}_{n}C_{r}$,	$\mathbf{d.)}_{(n+r-1)}\mathbf{C}_r$	<i>n</i> = <u>3</u>	_ r =	<u>5</u>	
26. How many duplicating		etters in the w	ord "COMPUTER" b	e arranged without o	omitting or		
a.) <i>n</i> ^r	$(b.)$ $_nP_r$	c.) ${}_{n}C_{r}$,	d.) $_{(n+r-1)}C_r$	<i>n</i> = <u>8</u>	_ r =	<u>8</u>	
the values (27. How many different dominos are there in a package? (Note: Each domino is a pair of numbers from the values 0, 1, 2, 3, 4, 5, and 6. A number can be paired with itself, e.g., 3 and 3 is allowed, but there is no order, e.g., a 3 paired with a 4 is the same as a 4 paired with a 3.)						
a.) <i>n</i> ^r	b.) $_{n}P_{r}$	c.) ${}_{n}C_{r}$,	$(d.)_{(n+r-1)}C_r$	<i>n</i> = <u>7</u>	_ r =	<u>2</u>	
can be select Without all Therefore, 29 True or fals The simple expressions	 28 True or false: r must always be less than or equal to n when determining the number of ways r items can be selected from a set of n items when order matters and duplicates are not allowed. Without allowing duplicates, the most elements that can be selected from a set of n elements is n! Therefore, r must always be less than or equal to n. 29 True or false: nC1 is always equal to nC(n-1). The simple way would have been to have simply tried a couple of examples to have seen how the two expressions are always equal. You could have also done the mathematical proof. (By the way, you 						
did know th			on the front of the test				
	$_{n}C_{1}={1}$	$\frac{n!}{!(n-1)!} =$	$\frac{n!}{(n-1)! \; 1!} \; = \; {(n-1)! \; 1!}$	$\frac{n!}{1)! (n - (n-1))!} = {}_{n}C$	n-1		
30. Which of the following expressions describes how to calculate the number of ways that a committee of 2 students and 4 faculty members can be formed from sets of 10 students and 16 faculty members?							
(a.) ${}_{10}C_2 \cdot {}_{10}$ (a.) ${}_{(26+6-1)}$	${}_{6}C_{4}$ b.) ${}_{6}C_{6}$ f.) 1	$(10+16-1)$ C ₆ $10^2 \cdot 16^4$	c.) ₁₀ P ₂ · ₁₆ P ₄ g.) (10!·16!)÷(2	d.) ₍₁₀₊₁₆₋₁₎ l 2! · 4!) h.) None of t	P ₆ the above		
₁₀ C ₂ ways t	First, choose 2 students from a set of 10, then choose 4 faculty members from a set of 16. There are $_{10}C_2$ ways to do the first thing then $_{16}C_4$ ways to do the second. Multiplying them together produces the final result.						

24. How many five-digit numbers are there in base-16? Assume leading zeros are included as digits.

First, choose from the set $\{2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A\}$ to figure out which "kind" to have four of. This is ${}_{13}C_1$. From the remaining 48 cards, choose one to make it a hand of five. This is ${}_{48}C_1$. Multiplying them together produces the final result.

d.) $_{52}C_4 \cdot {}_{48}C_1$

h.) None of the above

31. Which of the following expressions describes how to calculate the number of ways that drawing 5 cards from a deck of 52 can result in 4 of a kind with any other card being the fifth card?

a) ${}_{52}C_5 \div 13$ b.) ${}_{52}P_4 \cdot {}_{48}P_1$ c.) ${}_{52}C_1 \cdot {}_{48}C_1$ e.) ${}_{13}C_1 \cdot {}_{48}C_1$ f.) ${}_{13}C_1 \cdot {}_{48}C_1$ g.) ${}_{52}P_4 \cdot {}_{48}C_1$

Medium answers – 4 points each unless otherwise noted

32. Assume that a lottery allows you to pick 5 numbers from a group of 62. What is the probability that you will pick all five right? Don't bother performing multiplications or divisions. Just leave expanded.

Remember that a probability is the count of the number of ways you are interested in divided by the count of the number of possible results. There is exactly one way to get all five numbers right. This is the count of the number of ways we are interested in. The total number of ways is the number of ways that 5 numbers can be picked from 62 without duplicates and where order doesn't matter, i.e., $_{62}C_5$.

33. What is the probability that you will get a royal flush (four possible ways to do this) from drawing 5 cards from a deck of 52? Don't bother performing multiplications or divisions. Just leave expanded.

Once again, probability is the count of the number of ways you are interested in divided by the count of the number of possible results. As stated in the problem, there are four ways to get a royal flush. So how many ways can we pull 5 cards from $52?_{52}C_5$.

$$\frac{4}{_{52}C_5}$$

34. Use truth tables to show that $p \Rightarrow (p \lor q)$ is a tautology. Show <u>all</u> intermediate steps. Be sure to label columns.

$$\begin{array}{c|cccc} p & q & p \lor q & p \Longrightarrow (p \lor q) \\ \hline T & T & T & T \\ T & F & T & T \\ F & T & T & T \\ F & F & F & T \end{array}$$

35. Use truth tables to show that $(p \Leftrightarrow q) \Leftrightarrow ((q \Rightarrow p) \land (p \Rightarrow q))$ is a tautology. Show <u>all</u> intermediate steps. Be sure to label columns.

p	\boldsymbol{q}	$p \Leftrightarrow q$	$q \Rightarrow p$	$p \Rightarrow q$	$(q \Rightarrow p) \land (p \Rightarrow q)$	$(p \Leftrightarrow q) \Leftrightarrow ((q \Rightarrow p) \land (p \Rightarrow q))$
T	T	T	T	T	T	T
T	F	F	T	F	F	T
F	T	F	F	T	F	T
F	F	T	T	T	T	T

Mathematical induction problem – 7 points

36. Select only one of the following statements to prove true using mathematical induction.

a.)
$$2 + 4 + 6 + ... + 2n = n(n + 1)$$

b.)
$$1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n+1)(2n-1)}{3}$$

c.)
$$5 + 10 + 15 + \dots + 5n = \frac{5n(n+1)}{2}$$

a.)
$$2+4+6+...+2n=n(n+1)$$

Base case: n = 1

$$2 = 1 \cdot (1 + 1) = 2$$
 \leftarrow It works for $n = 1!$

Assume the k case is true:

$$2+4+6+...+2k = k(k+1)$$

From it, derive the k+1 case which is $2 + 4 + 6 + ... + 2k + 2(k+1) = (k+1) \cdot (k+1+1)$

$$2 + 4 + 6 + ... + 2k + 2(k + 1) = k(k + 1) + 2(k + 1)$$
 Add $2(k + 1)$ to both sides
$$= (k + 1) \cdot (k + 2)$$
 Pull out the $(k + 1)$ from both terms

$$= (k+1)\cdot (k+1+1)$$
 Set 2 equal to 1 + 1.

Since the last line equals the k+1 case, we've proven the formula for all values $n\ge 1$.

b.)
$$1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n+1)(2n-1)}{3}$$

Base case: n = 1

$$(2\cdot 1 - 1)^2 = 1^2 \frac{1(2\cdot 1 + 1)(2\cdot 1 - 1)}{3} = (1\cdot 3\cdot 1)/3 = 1$$
 \leftarrow It works for $n = 1$!

Assume the k case is true:

$$1^2 + 3^2 + 5^2 + \dots + (2k-1)^2 = \frac{k(2k+1)(2k-1)}{3}$$

From it, we need to derive the k+1 case which is:

$$1^2 + 3^2 + 5^2 + \dots + (2k-1)^2 = \frac{(k+1)(2(k+1)+1)(2(k+1)-1)}{3} = \frac{(k+1)(2k+3)(2k+1)}{3}$$

$$1^{2} + 3^{2} + 5^{2} + \dots + (2k - 1)^{2} + (2(k + 1) - 1)^{2} = \frac{k(2k + 1)(2k - 1)}{3} + (2(k + 1) - 1)^{2}$$

$$= \frac{k(2k + 1)(2k - 1)}{3} + \frac{3(2(k + 1) - 1)^{2}}{3}$$

$$= \frac{k(2k + 1)(2k - 1) + 3(2(k + 1) - 1)^{2}}{3}$$

$$= \frac{k(2k + 1)(2k - 1) + 3(2k + 1)^{2}}{3}$$

$$= \frac{(2k + 1)[k(2k - 1) + 3(2k + 1)]}{3}$$

$$= \frac{(2k + 1)[2k^{2} - k + 6k + 3]}{3}$$

$$= \frac{(2k + 1)[2k^{2} + 5k + 3]}{3}$$

$$= \frac{(k + 1)(2k + 3)(2k + 1)}{3}$$

c.)
$$5 + 10 + 15 + ... + 5n = \frac{5n(n+1)}{2}$$

Base case:
$$n = 1$$

 $5 = \frac{5 \cdot 1 \cdot (1+1)}{2} = 5$ \leftarrow It works for $n = 1$!

Assume the k case is true:

$$5 + 10 + 15 + \dots + 5k = \frac{5k(k+1)}{2}$$

From the k case, prove the k+1 case which is shown below:

$$5 + 10 + 15 + \dots + 5k + 5(k + 1) = \frac{5(k + 1)(k + 1 + 1)}{2}$$
Add 5(k + 1) to both sides.
$$5 + 10 + 15 + \dots + 5k + 5(k + 1) = \frac{5k(k + 1)}{2} + 5(k + 1)$$

$$5 + 10 + 15 + \dots + 5k + 5(k + 1) = \frac{5k(k + 1)}{2} + \frac{10(k + 1)}{2}$$

$$5 + 10 + 15 + \dots + 5k + 5(k + 1) = \frac{5k(k + 1) + 10(k + 1)}{2}$$
Pull out 5 and (k + 1)
$$5 + 10 + 15 + \dots + 5k + 5(k + 1) = \frac{5(k + 1)[k + 2]}{2}$$

$$5 + 10 + 15 + \dots + 5k + 5(k + 1) = \frac{5(k + 1)(k + 1 + 1)}{2}$$

Since the last line equals the k+1 case, we've proven the formula for all values $n \ge 1$.