Points missed:	_ Student's Name:	
Total score: /1	100 points	

East Tennessee State University
Department of Computer and Information Sciences
CSCI 2150 (Tarnoff) – Computer Organization
TEST 3 for Fall Semester, 2005

Read this before starting!

- The total possible score for this test is 100 points.
- This test is closed book and closed notes.
- All answers must be placed in space provided. Failure to do so may result in loss of points.
- 1 point will be deducted per answer for missing or incorrect units when required. No assumptions will be made for hexadecimal versus decimal, so you should always include the base in your answer.
- If you perform work on the back of a page in this test, indicate that you have done so in case the need arises for partial credit to be determined.
- *Calculators are not allowed.* Use the tables below for any conversions you may need. Leaving an answer as a numeric expression is acceptable.

Binary	Hex	Binary
0000	0	1000
0001	1	1001
0010	2	1010
0011	3	1011
0100	4	1100
0101	5	1101
0110	6	1110
0111	7	1111

Binary	Hex
1000	8
1001	9
1010	A
1011	В
1100	С
1101	D
1110	Е
1111	F

Power of 2	Equals
2^{3}	8
$\frac{2}{2^4}$	16
25	32
2^{6}	64
27	128
28	256
29	512
2^{10}	1K
$\frac{2}{2^{20}}$	1M
2^{30}	1G

"Fine print"

Academic Misconduct:

Section 5.7 "Academic Misconduct" of the East Tennessee State University Faculty Handbook, October 21, 2005:

"Academic misconduct will be subject to disciplinary action. Any act of dishonesty in academic work constitutes academic misconduct. This includes plagiarism, the changing of falsifying of any academic documents or materials, cheating, and the giving or receiving of unauthorized aid in tests, examinations, or other assigned school work. Penalties for academic misconduct will vary with the seriousness of the offense and may include, but are not limited to: a grade of 'F' on the work in question, a grade of 'F' of the course, reprimand, probation, suspension, and expulsion. For a second academic offense the penalty is permanent expulsion."

1.	Match each of the right. (3 p			ettings of the bus control	l signals l	$\overline{\mathtt{R}}$ and $\overline{\mathtt{W}}$	on	the left with the bus operation on
	$\overline{\mathbf{F}}$	{	$\overline{\mathbf{W}}$			Operation	on o	of the bus
)	0			Process	or re	eads from memory
	()	1			Process	or w	rites to memory
	1	L	0			The bus	s is i	dle
	1		1			Illegal s	settii	ng
2.	Circle <i>all</i> tha	ıt a	pply	. A storage cell in a DR	AM: (4 p	oints)		
	a.) is volatid.) is a latchg.) is typica	1		b.) is a capacitor e.) must be refres d for cache RAM	shed regul	larly	f.)	is cheaper than cells in a SRAM is smaller than cells in a SRAM is faster than an SRAM
3.		ry	rang	nd low addresses (in hexe defined with the chip so (4 points))		A_{23} A_{22} A_{21} A_{20} A_{19} A_{18} CS
	Low addres				High addı			
4.	For the chip	sel	lect i	n problem 3, how big is	the memo	ory chip	that	uses this chip select? (3 points)
5.				n problem 3, how big is b select? (3 points)	the memo	ory space	e of	the processor whose address lines
6.	True or false (2 points)	: 5	The a	nddress range 1AFFFF ₁₆	to 1AC0	00 ₁₆ is a	vali	d range for a single memory.
7.	inputs that re	su	lt in	-	ed. Wha	-		it has exactly one combination of gate might also work for a chip

8.	with a low address of 5C0000 ₁₆ and a high address of 5DFFFF ₁₆ . Label all address lines used for chip select. (5 points)							
9.	For each of the four following groups of information, put a check mark next to the ones for which there is enough information to correctly make the chip select logic for a memory device. (4 points)							
	 □ The high and low addresses for the memory device's address range. □ The starting (low) address and the size of the memory device. □ The starting (low) address and the size of the processor's address space. □ The number of address lines going to the memory device, the number of address lines coming from the processor, and any valid address for that memory device. 							
10.	What characteristic of storage devices <i>improves</i> as you move <i>up</i> through the memory hierarchy towards the processor? (2 points)							
11.	True or false: <i>Multiple zone recording</i> hard drives have more complex controllers than <i>constant</i> angular velocity hard drives. (2 points)							
12.	True or false: <i>Multiple zone recording</i> hard drives have better data density than <i>constant angular velocity</i> hard drives. (2 points)							
13.	By using different encoding methods, hard drive designers are able to increase without changing the physical technology of the drive. (2 points)							
	 a.) reliability b.) data density c.) error detection d.) throughput (speed data is retrieved) d.) none of the above 							
14.	The number of sectors per track on a multiple zone recording hard drive as you go closer to the outside edge of the disk. (2 points)							
	a.) increases b.) decreases c.) stays the same							
15.	Describe how the LFU replacement algorithm for the fully associative mapping algorithm works. (3 points)							

The table below represents a small section of a cache that uses fully associative mapping. Refer to it to answer questions 16 through 20.

Tags		Word within the block														
(binary)	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
110010110110	00_{16}	61 ₁₆	$C2_{16}$	1316	8416	E5 ₁₆	4616	A7 ₁₆	1216	3416	5616	78 ₁₆	$9A_{16}$	BC_{16}	DE ₁₆	$F0_{16}$
010101011100	6016	71 ₁₆	D2 ₁₆	33 ₁₆	9416	F5 ₁₆	3616	B7 ₁₆	2316	4516	67 ₁₆	89 ₁₆	AB_{16}	CD ₁₆	EF_{16}	0116
010111001011	2016	81 ₁₆	$E2_{16}$	83 ₁₆	$A4_{16}$	0516	6616	$C7_{16}$	8816	99 ₁₆	AA_{16}	BB_{16}	CC_{16}	DD_{16}	EE_{16}	FF_{16}
110010100110	3016	91 ₁₆	F2 ₁₆	53 ₁₆	$B4_{16}$	15 ₁₆	$A6_{16}$	$D7_{16} \\$	$FE_{16} \\$	DC_{16}	$BA_{16} \\$	9816	7616	54 ₁₆	3216	10_{16}
011011011001	40 ₁₆	A1 ₁₆	02 ₁₆	63 ₁₆	C4 ₁₆	25 ₁₆	8616	E7 ₁₆	ED ₁₆	CB ₁₆	A9 ₁₆	87 ₁₆	6516	43 ₁₆	21 ₁₆	$0F_{16}$
110010100101	5016	$B1_{16}$	22 ₁₆	73 ₁₆	$D4_{16}$	3516	9616	F7 ₁₆	11 ₁₆	44 ₁₆	55 ₁₆	77 ₁₆	$0F_{16}$	$1F_{16}$	$2F_{16} \\$	$3F_{16} \\$

- 16. Assuming the tags shown above do *not* delete leading zeros, how many address lines does the processor that uses this cache have? (2 points)
- 17. What is the block size (in number of memory locations) for the cache shown above? (2 points)
- 18. From what address in main memory did the value A1₁₆ (the value in bold) come from? Leave your answer in binary. (3 points)
- 19. A copy of the data from memory address CA5B₁₆ is contained in the portion of the cache shown above. What is the value stored at that address? (2 points)
- 20. If the block containing memory address 4648₁₆ were to be loaded into the cache described above, what would the tag be? (2 points)

21. True or false: The method used to make a chip select for a memory device is the same as that used to identify a subnet ID in a TCP/IP network or to identify a block ID in a memory space. (2 points)

22. Assume a processor takes 3 cycles to execute any instruction (fetch, decod	de, execute)
a. How many cycles would a <i>non-pipelined</i> processor take to execute 7	instructions? (2 points)
b. How many cycles would a <i>pipelined</i> processor take to execute 7 instr	uctions? (2 points)
23. What are the settings of the zero flag, the sign flag, the carry flag, and the overflow flag after a processor performs the addition shown to the right? (4 points)	1 111 1 01010101 + 10110110 00001011
ZF =	=
24. What mathematical operation does a processor use to compare two values or to see if one is greater than the other? (2 points)	to see if they are equal
Answer:	
25. What is the purpose of the ALU? (2 points)	
26. Name the two benefits of the segment/pointer addressing system of the 80	x86. (3 points)
27. Assume AX=1000 ₁₆ , BX=2000 ₁₆ , and CX=3000 ₁₆ . After the following cowould AX, BX, and CX contain? (3 points)	ode is executed, what
Place your answers	in space below:
PUSH AX PUSH BX PUSH CX	=
POP BX POP CX	=
POP AX CX =	=
28. What is the physical address pointed to by the 80x86 segment/pointer pair the values given are in hexadecimal. (2 points)	· 3200:1234? Note that

29. Which 80x86 segment/pointer register pair points to the next instruction to be executed by the processor? (2 points)									
	a.) es:sp b.) es:di	c.) ss:bp	d.) ds:si	e.) cs:ip	f.) ds:ip	g.) cs:di	h.) ss:sp		
30.	Which 80x86 segment/pointer register pair points to where the arguments for a function or procedure are stored on the stack? (2 points)								
	a.) es:sp b.) es:di	c.) ss:bp	d.) ds:si	e.) cs:ip	f.) ds:ip	g.) cs:di	h.) ss:sp		
31.	Using an original value AND, a bitwise OR, ar						of a bitwise		
	Original value	Bitwise	operation		Mask]	Result		
	100110012	A	ND	00	00011112				
	100110012	()R	00	00011112				
	10011001 ₂	X	OR	00	00011112				
	Describe the primary d Describe one of the two the calculation of a CR	o reasons discu							
35.	True or false: When us device must use the sar	_		_		_	the receiving		
36.	For each of the following packet (I), or a TCP paprovided. (6 points)	_	•						
	interconne	col is used to go cted networks. col uses a prear					-		
	This proto	col uses a CRC	instead of	a datasum-l	ased checks	um.			
	network(s)	col includes a " in case it cann ical address def	ot find its	destination.					
	Uses a phy	rsical address of	n the netw	ork interface	e hardware fo	or its address:	ing.		