
Points missed: _____ Student's Name: _________________________________

Total score: _____ /100 points

East Tennessee State University – Department of Computer and Information Sciences
CSCI 2150 (Tarnoff) – Computer Organization – Section 001

TEST 1 for Fall Semester, 2007

Read this before starting!

• The total possible score for this test is 100 points.
• This test is closed book and closed notes
• Please turn off all cell phones & pagers during the test.
• You may NOT use a calculator. Leave all numeric answers in the form of a formula.
• You may use one sheet of scrap paper that you must turn in with your test.
• All answers must have a box drawn around them. This is to aid the grader (who might not be me!)

Failure to do so might result in no credit for answer. Example:

• 1 point will be deducted per answer for missing or incorrect units when required. No assumptions
will be made for hexadecimal versus decimal, so you should always include the base in your
answer.

• If you perform work on the back of a page in this test, indicate that you have done so in case the
need arises for partial credit to be determined.

• Statement regarding academic misconduct from Section 5.7 of the East Tennessee State University
Faculty Handbook, June 1, 2001:

"Academic misconduct will be subject to disciplinary action. Any act of dishonesty in academic work constitutes
academic misconduct. This includes plagiarism, the changing of falsifying of any academic documents or materials,
cheating, and the giving or receiving of unauthorized aid in tests, examinations, or other assigned school work.
Penalties for academic misconduct will vary with the seriousness of the offense and may include, but are not limited to:
a grade of 'F' on the work in question, a grade of 'F' of the course, reprimand, probation, suspension, and expulsion. For
a second academic offense the penalty is permanent expulsion."

Basic Rules of Boolean Algebra

 OR AND XOR

Combined w/0 AA =+ 0 00 =⋅A AA =⊕ 0

Combined w/1 11=+A AA =⋅1 AA =⊕1

Combined w/self AAA =+ AAA =⋅ 0=⊕ AA

Combined w/inverse 1=+ AA 0=⋅ AA 1=⊕ AA

Other rules ABAA =⋅+ BABAA +=⋅+ CBACABA ⋅+=+⋅+)()(

DeMorgan's Th. () BABA +=⋅ () BABA ⋅=+

Short-ish Answer (2 points each unless otherwise noted)

1. Which unit of measurement is equivalent to (the same as) Hertz?

a.) Cycles per second b.) Percent c.) Seconds d.) Seconds per cycle e.) Cycles

2. What is the frequency of the signal show to the right?

Frequency is the inverse of the period, so the first
thing we need to do is determine the period. The
period is equal to the time of a full cycle, which in
the figure to the right is 0.14 seconds plus 0.06
seconds. This gives us a measurement for the
period of 0.2 seconds. Therefore, the answer is:

You could have left your answer as 1/(0.2) Hz if you wanted to, but I wanted to see the units of Hz
to be sure that you knew the units for frequency.

3. The duty cycle for the previous problem is:

a.) greater than 50% b.) equal to 50% c.) less than 50%

Remember that the duty cycle represents the percentage of time that a periodic signal is a logic 1.
Officially, the expression used to determine the duty cycle is:

[time high (th) / period (T)] × 100%

Since during a single period, the signal from problem 2 is high 0.14 seconds and low 0.06
seconds, then the signal is high more than it is low, and therefore the duty cycle is greater than
50%. Officially, the duty cycle is (0.14 seconds ÷ 0.2 seconds) × 100% = 70%.

4. How many patterns of ones and zeros can be made using 9 bits?

The number of patterns of ones and zeros that can be represented with n bits is 2n. For 9 bits,
substitute 9 for n and get 29 which equals 512. Many people confuse the total number of
combinations of ones and zeros with the maximum value that can be represented with unsigned
binary notation. For that, the equation is 2n – 1. The error in that reasoning is that you miss the
first pattern, 010 = 0000000002.

Ans. = 29 = 512

5. What is the most negative value that can be stored using a 9-bit 2's complement representation?

a.) –(27 – 1) b.) –(28 – 1) c.) –(29 – 1) d.) –27 e.) –28 f.) –29

You could have memorized the fact that the most negative number of an n-bit 2’s complement
value is –2n-1, which in the case of this problem is –28. Otherwise, you could have remembered
that the most negative 2’s complement value is a 1 in the MSB followed by all zeros. For 9-bits

0.06 seconds

0.14 seconds

frequency =
 1 1
 period 0.2 seconds

5 cycles/seconds = 5 Hz =

=

this is 100000000. Converting this to the positive equivalent gives us, well, 100000000. This is
the unsigned binary representation which equals 28. Making it a negative number makes it –28.

6. Gray code is:

a.) a numbering system designed to best represent the color levels of a gray scale image
b.) a representation of binary that allows for quick conversion to and from decimal
c.) a secret language spoken only by people from Gray, TN
d.) a binary representation meant to improve the speed with which data is stored to memory
e.) a sequence of numbers where only a single bit changes when incrementing or decrementing

through the sequence

It seems that a few people forgot that Gray codes were going to be on the test. Sorry. Check out
section 2.9 of the textbook for a refresher.

7. For each of the following applications, what would be the optimum (best) binary representation,

unsigned binary (UB), 2's complement (TC), IEEE 754 Floating Point (FP), or binary coded
decimal (BCD)? Identify your answer in the blank to the left of each application. (2 points each)

___TC___ the distance above (positive) or below (negative) sea level in feet to the nearest integer

This needs to be a signed integer. The only signed integer provided above in the selections is 2’s
complement.

___FP___ the number of atoms in a grain of salt (a really huge number)

This number needs to be represented in scientific notation, and therefore any of the integer
representations would require far too many bits. We needed to go to floating point.

___BCD__ the value in dollars and cents of a financial portfolio

Remember our discussion in class of the importance of keeping things
in decimal for financial institutions? That means BCD.

8. Write the complete truth table for a 2-input NOR gate.
Remember that the output of a NOR gate is just the inverted output of
an OR gate which means that it’s a 0 when any input is a 1. Some
people confused this with the XOR gate. Not the same.

9. In the boolean expression below, circle the operation that would be performed first.

DCBA ⋅⋅+

10. Multiply the 16-bit value 00001101110000002 by 8. Leave your answer in 16-bit binary. (Hint:

Remember the shortcut!) (3 points)

Since 8 is a power of two, i.e., 8 = 23, then the multiplication can be performed by simply shifting
the binary number left 3 positions. This is the same as adding three zeros to the least significant
side (right side) of the number. Typically, with a limited register size, left shifts result in bits being
shifted OUT from the top. (The zeros in the figure below are the added digits.)

01101110000000002

Some people confused this with division which is what was used in the Spring 2007 test.

A B X
0
0

0
1

1
0

1 0 0
1 1 0

11. Convert 1010010010010101011012 to hexadecimal. (3 points)

First, let's create the conversion table between binary and hex. That
table is shown to the right.

Once the table has been created, divide the number to be converted
into nibbles. You must do this starting from the right side with the
least significant bits. Starting from the left might leave you with a
partial nibble on the right side. The result is shown below:

0001 0100 1001 0010 1010 11012

Notice that three leading zeros needed to be added. Each of these
nibbles corresponds to a pattern from the table to the right. Now it
just becomes a straight conversion.

1492AD16

And yes, I did that on purpose. ☺

12. Convert the decimal value 8610 to 8-bit BCD.

This uses the identical process as the hexadecimal to binary conversion except that the conversion
is from decimal to binary using the exact same table. Okay, so there are no letters in decimal, but
that only means that the nibble patterns 1010, 1011, 1100, 1101, 1110, and 1111 never appear in a
BCD number. 8610 converts to the following in BCD.

1000 0110

13. Convert the unsigned binary value 110012 to its corresponding 5-bit binary Gray code. (3 points)

Once again, Tarnoff thwarts us with the dreaded Gray code. Well, from page 39 of the textbook,
we have the conversion sequence which says to begin by adding a leading zero to the number to
be converted. For each boundary between bits, place a 1 if the bits on either side of the boundary
are different and place a 0 if the bits on either side of the boundary are the same.

Therefore, the answer is 10101.

Binary Hexadecimal
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 A
1 0 1 1 B
1 1 0 0 C
1 1 0 1 D
1 1 1 0 E
1 1 1 1 F

1 1 0 0 1 0
Add zero to left-
most side of the
value to convert

1 0 1 0 1

Adjacent bits that are
different generate a 1.

Adjacent bits that are
the same generate a 0.

Medium-ish Answer (4 points each unless otherwise noted)

14. Convert the 32-bit IEEE 754 floating-point number 11000000110011100000000000000000
to its binary exponential format, e.g., 1.1010110 x 2-12, (which, by the way, is not even close to
correct).

Once again, begin by dividing up the floating-point number into its components.

S E F
1 10000001 = 128 + 1 = 129 10011100000000000000000

Substituting into the expression +1.F x 2(E-127) gives us our answer.

+1.F × 2(E-127) = –1.100111 × 2(129-127) = –1.100111 × 22 = –110.0111

15. Convert 11001.1012 to decimal. (You may leave your answer in expanded form if you wish.)

Remember that binary digits to the right of the point continue in descending integer powers
relative to the 20 position. Therefore, the powers of two are in order to the right of the point
2-1 = 0.5, 2-2 = 0.25, 2-3 = 0.125, and 2-4 = 0.0625.
(Note that 2-4 is not needed for this problem.)

Therefore, the answer is:

24 + 23 + 20 + 2–1 + 2–3 = 16 + 8 + 1 + 1/2 + 1/8 = 25.625

You could have left your answer in any of these three forms in order to receive full credit.

16. Draw the circuit exactly as it is represented by the Boolean expression CABA ⋅++ .

17. Prove that 0=⊕ AA . (Remember that ⊕ is the XOR or exclusive-OR)

The table below is all that is needed to prove the theorem. The important part is that both the
columns for A⊕A and A are both shown so that the relationship is obvious. Basically, anything
exclusive-OR’ed with itself results in an even number of ones and hence, an output of zero.

A A⊕A
0 0 ⊕ 0 = 0
1 1 ⊕ 1 = 0

24 23 22 21 20 2-1 2-2 2-3 2-4
1 1 0 0 1 1 0 1 0

A

B

C

X

18. Use any method you wish to prove the rule BABAA +=⋅+ . Show all steps.

As discussed in class, the only easy way to prove this theorem is to use the truth table. The truth
table needs to develop columns for both sides of the expression. Note that due to MS Word
issues, the tilde ~ is used to represent the not function, i.e., NOT A = ~A.

A B ~A ~A⋅B A + ~A⋅B A+B
0 0 1 0 0 0
0 1 1 1 1 1
1 0 0 0 1 1
1 1 0 0 1 1

19. In the space to the right, create

the truth table for the circuit
shown below.

20. Write the Boolean expression for the circuit shown in the previous problem. Do not simplify!

 The answer below is simply copied from the truth table above where the Boolean expression was
derived.

CABA ⋅++)(

Longer Answers (Points vary per problem)

21. Assume that an 8-bit binary number is used to represent an analog value in the range from 0 to 30.
Convert all four of the following binary values to their analog equivalent, i.e., what analog value
does each of these binary values represent? (You may leave your answer in the form of a fraction
in some cases if you wish.) (5 points)

Remember that the range of bit patterns for an 8-bit binary value is distributed evenly across the
analog range where all zeros represents the low end of the range and all ones represents the high
end. That should immediately answer parts a and d, i.e., 000000002 = the lowest value, i.e., 0, and
111111112 = highest value, i.e., 30.

For b and c, you need to first calculate how much a single increment changes the analog value.
For 8 bits, there are 28 – 1 = 255 increments over a range of 0 to 30. That means that a single
increment represents a difference in the analog value of (30 – 0)/255. This immediately answers
part b because 000000012 is exactly one increment above 0 and hence represents 30/255.

 A B C BA + BA + CA ⋅ CABA ⋅++)(
 0 0 0 0 1 0 1

 0 0 1 0 1 0 1

 0 1 0 1 0 0 0

 0 1 1 1 0 0 0

 1 0 0 1 0 0 0

 1 0 1 1 0 1 1

 1 1 0 1 0 0 0

 1 1 1 1 0 1 1

A

B

C

X

Part d is the hard one. It represents 000001012 = 8 + 2 = 1010 increments above 0. Therefore, the
analog value it corresponds to is 10 × 30/255 = 300/255.

a.) 000000002 = 0

b.) 000000012 = 30/255

c.) 000010102 = 10 × 30/255

d.) 111111112 = 30

22. Use DeMorgan's Theorem to distribute the inverse of the expression DCBA +++ all of the way
to the individual input terms. Do not simplify!

A + B + C + D

_ _ _____
A·B·(C + D)

_ _
A·B·(C + D)

There are actually a couple of ways to do
this, but the easiest is to first assume the
inverted OR of C and D are a single element.
This means that the final NOT is to be
distributed across A, B, and ~(C+D). Remember
to distribute the inverse across the OR and
change all of the OR’s to AND’s. The double
inverses over (C+D) will cancel.

23. Mark each Boolean expression as true or false depending on whether the right and left sides of the

equal sign are equivalent. Show all of your work to receive partial credit for incorrect answers.
(3 points each)

 a.) BABABABA ⋅+⋅=+⋅+)()(Answer: ___________
 _ _ _ _
 A ·A + A ·B + B ·A + B ·B Apply F-O-I-L
 _ _
 0 + A ·B + B ·A + 0 Anything AND’ed w/inverse = 0
 _ _
 A ·B + B ·A Anything OR’ed w/0 = itself

 b.) DCBADBACBA ⋅+⋅=+⋅⋅+⋅)()(Answer: ___________

 There are 2 ways to do this. First, you could app ly the rule

(A + B) ·(A + C) = A + B ·C substituting A ·B for A, C for B and D
for C. That would give you (A ·B + C) ·(A ·B + C) = A ·B + B ·C.
You could also start off with F-O-I-L and simplify from there.

 A ·B·A·B + A ·B·D + A ·B·C + C ·D Apply F-O-I-L

 A ·B + A ·B·D + A ·B·C + C ·D Anything AND’ed w/self = self

 A ·B(1 + D + C) + C ·D Pull out A ·B

 A ·B·1 + C ·D Anything OR’ed w/1 = 1

 A ·B + C ·D Anything AND’ed w/1 = self

True

True

 c.) AACCABAA =++⋅+⋅+ Answer: ___________
 _ _ _
 A + A ·B + A ·C + C ·A Apply DeMorgan’s Theorem
 _ _ _
 A + A ·C + C ·A A + A ·B = A
 _ _ _
 A + A ·(C + C) Pull out A
 _
 A + A ·1 Anything OR’ed w/inverse = 1
 _
 A + A Anything AND’ed w/1 = self

 1 Anything OR’ed w/inverse = 1

24. Fill in the blank cells of the table below with the correct numeric format. For cells representing

binary values, only 8-bit values are allowed! If a value for a cell is invalid or cannot be
represented in that format, write "X". (7 points per row)

Decimal 2's complement
binary

Signed magnitude
binary

Unsigned binary Unsigned BCD

130 X X 10000010 X

68 01000100 01000100 01000100 01101000

–67 10111101 11000011 X X

First row:
• Begin by converting the positive number to unsigned

binary. We know we can do this because 8-bit unsigned
binary goes up to 255. We see that 130 is made up of
the powers of two 27 = 128 and 21 = 2.

• Now, note that the unsigned (positive) representation uses the 8th bit for magnitude, i.e., 128.
Since the MSB is used for magnitude, it cannot be used for a sign bit. Therefore, this value
cannot be represented with either 2’s complement or signed magnitude representation. Put
X's in those columns.

• Lastly, 8-bit BCD only goes up to 9910 = 10011001. 13010 would require 12 bits or 3 nibbles.
Therefore, put an X in that column. If we had had 12 bits to represent this number, we could
have represented 130 in BCD with 0001 0011 0000

Second row:
• The number represented in the 2’s complement column of the second row is a positive

number. We know this because the MSB is set to 0. Therefore, the binary value is the same
for signed magnitude and for unsigned binary. Just copy 01000100 to the other two columns.

• Decimal: To perform the conversion process, simply
convert the value to a decimal number by adding the
powers of two represented by the ones in the binary
value. This gives us 26 + 22 = 64 + 4 = 6810.

 27 26 25 24 23 22 21 20
 1 0 0 0 0 0 1 0

 27 26 25 24 23 22 21 20
 0 1 0 0 0 1 0 0

False

Second row continued:
• BCD: BCD must be computed from the decimal values. It is similar to converting from

hexadecimal to binary except that there are no letters A through F. Using the hexadecimal to
binary conversion table shown earlier in this document, we see that 610 = 0110 and 810 = 1000.
Therefore, the BCD column is set to 01101000.

Third row:
• First, the value is negative because in the signed magnitude representation the MSB is set to 1.

Therefore, there is no unsigned magnitude or unsigned BCD representation. Put X’s in those
columns.

• Decimal: To begin the conversion process to decimal, we must first convert the value to a
positive number by clearing the sign bit to 0. This gives us the unsigned value 010000112. To
calculate the decimal value, add the powers of two represented by the ones in the unsigned
value. This gives us 26 + 21 + 20 = 64 + 2 + 1 = 6710. But remember that the number is
negative, so add a negative sign to get the decimal value –6710.

• To calculate the 2's complement representation, take the unsigned value 010000112 from the
previous operation, and compute the 2's complement using the shortcut we presented in class
(red indicates inverted bits):

This gives us 10111101.

67: 0 1 0 0 0 0 1 1
–67: 1 0 1 1 1 1 0 1

