
Points missed: _____ Student's Name: _______________________________________

Total score: _____ /100 points

East Tennessee State University

Department of Computer and Information Sciences

CSCI 4717 – Computer Architecture

TEST 3 for Fall Semester, 2006

Read this before starting!

 The total possible score for this test is 100 points.

 This test is closed book and closed notes

 Please turn off all cell phones & pagers during the test.

 You may use one sheet of scrap paper that you will turn in with your test.

 When possible, indicate final answers by drawing a box around them. This is to aid the

grader (who might not be me!) Failure to do so might result in no credit for answer.

Example:

 1 point will be deducted per answer for missing or incorrect units when required. No

assumptions will be made for hexadecimal versus decimal, so you should always include the

base in your answer.

 If you perform work on the back of a page in this test, indicate that you have done so in case

the need arises for partial credit to be determined.

“Fine print”

Academic Misconduct:

Section 5.7 "Academic Misconduct" of the East Tennessee State University Faculty Handbook, October 21, 2005:

"Academic misconduct will be subject to disciplinary action. Any act of dishonesty in academic work constitutes academic

misconduct. This includes plagiarism, the changing of falsifying of any academic documents or materials, cheating, and the

giving or receiving of unauthorized aid in tests, examinations, or other assigned school work. Penalties for academic

misconduct will vary with the seriousness of the offense and may include, but are not limited to: a grade of 'F' on the work

in question, a grade of 'F' of the course, reprimand, probation, suspension, and expulsion. For a second academic offense

the penalty is permanent expulsion."

1. True or false: A page fault always results in a page being removed from memory to make room

for a new page. (2 points)

2. True or false: In a system that uses paging where processes are divided into pages, all pages except

for the last page of a process are equal sizes. (2 points)

3. True or false: In a system that uses paging, the process page size is equal to the memory page

frame size. (2 points)

4. True or false: In a system that uses paging, the pages of a process must be in order in memory.

(2 points)

5. True or false: In a system that uses paging, the pages of a process must be in contiguous (adjacent

or unbroken) memory. (2 points)

6. In a system that uses paging, ___________________ maintains a list of the free frames. (2 points)

a.) the applications or processes

b.) a hardware mechanism in main memory

c.) a hardware mechanism in the cache

d.) the operating system

e.) none of the above

7. What problem is typically caused by large virtual memory page sizes? (2 points)

Wasted space

8. Using the page table shown to the right representing a specific process,

calculate the physical address from the logical address 079A16. Assume

a page size of 2
8
 = 256. (3 points)

a.) 9A16 b.) 79A16 c.) 449A16 d.) FE9A16 e.) 6C9A16

f.) 9A9A16 g.) Not enough of the page table given to calculate

Since the size of a page is 256 bytes, then the last 8 bits of a physical

address (2
8
 = 256) is the offset into a page. This means that the last 8

bits of both the physical and logical addresses represent offset. Note that

this automatically requires that the last byte of the physical address must also

be 9A. For the logical address, the bits above the lower 8 bits represent the

page number in the page table. The frame address contained in the

page table should replace the page number to give us the

physical address. Since there is no page 7 however, we do

not have enough information.

07 9A

lower 8 bits page number

LOGICAL ADDRESS

?? 9A

lower 8 bits frame number

PHYSICAL ADDRESS

44

9A

2C

54

4A

FE

6C

Start of

page table

??

0

1

2

3

4

5

6

page

number

7

9. Assume the page size of the previous problem changes to 2
9
 = 512, but everything else remains

the same. What is the physical address from the logical address 079A16. (3 points)

Now with 9 bits used for the page offset, the page number is taken from the bits above the lower

nine bits. (Note that 079A16 = 0000 0111 1001 10102.)

Page Number

(From remaining bits)

Offset

(Lower 9 bits)

0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0

This gives us a page number of 00000112 = 310. Going to entry 3 of our page table gives us a

frame number of 5416 = 010101002. Substituting the frame number 010101002 for our page

number should give us the physical address.

Frame Number

(From page number 3)

Offset

(Lower 9 bits)

0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0

Put the frame number with the offset and get 010101001100110102 which equals A99A16.

a.) 39A16 b.) 79A16 c.) 559A16 d.) 549A16 e.) 6C9A16

f.) A99A16 g.) Not enough of the page table given to calculate h.) None of the above

10. A(n) _________________ saves the memory required for a page table by maintaining a table of

only the pages represented by real memory and not all of the pages for a process. (2 points)

a.) translation lookaside buffer b.) virtual page table c.) segmentation table

d.) partition table e.) inverted page table f.) none of the above

11. The single instruction below is a three-operand instruction. In the table below, write three short

programs that do exactly the same thing, one with two-operand instructions, one with one-operand

instructions, and one with zero-operand instructions. If it fits the need of the instruction, feel free

to use register names R1, R2, etc. (5 points)

MULT A,B,C ;A = B C

Two operand instructions

MOV A, B
MULT A, C

One operand instructions

LOAD B
MULT C

STORE A

Zero operand instructions

PUSH B
PUSH C

MULT
POP A

12. Which of the following operations is performed by the zero-operand assembly

language code shown to the right? (2 points)

a.) Y = ((B C) + D) (A – E)

b.) Y = A (B (C + D) – E)

c.) Y = (A (B + C)) (D – E)

d.) Y = ((A B) + C) (D – E)

e.) Y = (A + (B C) – D) E

f.) None of the above

The first operation is to put A and B on the top of the stack. This means that when

the MULT operation is performed, it multiplies A and B and puts A × B on the top of the stack.

This automatically eliminates answers a, b, c, and e just because of the fact that A × B is not a

“first operation” of any of them. Let’s now see if answer d is still viable.

Pushing C onto the stack then doing an ADD adds A × B to C giving us (A × B) + C. Answer d is

still in the running.

Next, D and E are pushed giving us the top three items on the stack as (A × B) + C, D, and then E.

The following SUB operation subtracts E from D then places the result D – E on the stack right

above (A × B) + C.

The MULT operation multiplies D – E by (A × B) + C giving us ((A × B) + C) × (D – E). The

popped value is then stored in Y. Therefore, the answer is d.

13. From the list below of stages of a 6-stage pipeline, identify the stage at which the outcome of a

conditional branch has been determined. Circle one. (2 points)

a.) Fetch instruction (FI) b.) Decode instruction (DI) c.) Calculate operands (CO)

d.) Fetch operands (FO) e.) Execute Instruction (EI) f.) Write Operand (WO)

14. From the list below of stages of a 6-stage pipeline, identify all of the stage(s) that may vary

considerably in duration depending on the instruction or operand. Circle all that apply. (2 points)

a.) Fetch instruction (FI) b.) Decode instruction (DI) c.) Calculate operands (CO)

d.) Fetch operands (FO) e.) Execute Instruction (EI) f.) Write Operand (WO)

15. From the list below of stages of a 6-stage pipeline, identify all of the stages that are always used in

the execution of all instructions. Circle all that apply. (2 points)

a.) Fetch instruction (FI) b.) Decode instruction (DI) c.) Calculate operands (CO)

d.) Fetch operands (FO) e.) Execute Instruction (EI) f.) Write Operand (WO)

16. From the list below of stages of a 6-stage pipeline, identify the stage after which the processor

check for interrupts? Circle one. (2 points)

a.) Fetch instruction (FI) b.) Decode instruction (DI) c.) Calculate operands (CO)

d.) Fetch operands (FO) e.) Execute Instruction (EI) f.) Write Operand (WO)

PUSH A

PUSH B

MULT

PUSH C

ADD

PUSH D

PUSH E

SUB

MULT

POP Y

17. An instruction prefetch architecture is essentially a ________- stage pipeline. (2 points)

a.) 1 b.) 2 c.) 3 d.) 4 e.) 5 f.) 6 g.) 7

18. In an ideal implementation, what is the speed up of a processor with a k-stage pipeline over a non-

pipelined processor if the duration of each stage is ? Don’t consider pipeline flushes or delays

incurred between stages. (2 points)

a.) k· b.) k–2 c.) k–1 d.) k e.) (k+1)· f.) k+ –1 g.) none of the above

19. How many bits are required for each conditional branch in a branch history table in order to

remember the past 2 branch outcomes for a specific instruction? (2 points)

a.) 2 b.) 3 c.) 4 d.) 5 e.) 6 f.) 7 g.) 8

20. List two of the three causes discussed in class of disrupting a pipeline. (3 points)

There were actually many more than three discussed in class. They include:

 Resource conflict

 Data dependency

 Conditional branch

 Interrupts

 Varied instruction time or time added to fetch multiple operands

For problems 21, 22, and 23, consider the following section of code.

for (i=0; i<2; i++)

{

 for (j=0; j<5; j++)

 {

 for (k=0; k<4; k++)

 sum += array_val[i, j, k];

 }

}

21. Once compiled, how many conditional jumps would be contained in the machine code resulting

from the above section of code, i.e., static occurrence? (2 points)

There would be one conditional jump at the end of each for-loop: 3 conditional jumps.

22. After fully executing the above section of code, how many conditional jumps would the CPU have

encountered, i.e., dynamic occurrence? (2 points)

First of all, let us figure out for each for-loop how many times their associated conditional jump

would be encountered.

 k-loop: one loop for each k=0, k=1, k=2, and k=3. That makes four times the k-loop’s

conditional branch is encountered.

 j-loop: one loop for each j=0, j=1, j=2, j=3, and j=4. That makes five times the j-loop’s

conditional branch is encountered.

 i-loop: one loop for each i=0 and i=1. That makes two times the k-loop’s conditional

branch is encountered.

Since the j-loop is executed once for every time the i-loop is executed, then the j-loop loops 2 × 5

times or 10 times. Since the k-loop is executed once for every time the j-loop is executed, then the

k-loop loops 10 × 4 times or 40 times. Therefore, the number of times a conditional jump is

encountered is the number of times a conditional jump is encountered for each of the loops.

 Total encounters with conditional jump = times for i-loop + times for j-loop + times for k-loop

 = 2 + 10 + 40

 = 52 conditional jumps

23. Using the static branch prediction algorithm “branch always,” how many of the conditional jumps

calculated in the previous problem would have been predicted incorrectly? (2 points)

“Branch always” predicts wrong once at the last execution of a loop. That happens once for the i-

loop, twice for the j-loop, and ten times for the k-loop. This means there will be 13 incorrect

predictions.

24. There are 3 types of static branch prediction methods: predict always taken, predict never taken,

and predict based on opcode_________ (fill in the blank) (2 points)

25. For the six architectural characteristics listed below, identify whether the statement more closely

identifies a CISC architecture or a RISC architecture. (6 points)

 CISC RISC

Assembly language is closer to high-level language

Tends to have fewer stages in pipeline

Tends to have fewer addressing modes

Allows for indirect addressing

Registers tend to be more specialized than general purpose

Allows the operands of an arithmetic instruction to be memory references

26. What is the absolute minimum number of registers required to execute the code below. (2 points)

a.) 2 b.) 3 c.) 4 d.) 5 e.) 6 f.) 7 g.) 8

int done = 0;
int user_input << cin;
while (!done)
{
 int calc = 0;
 switch (user_input)
 {
 case 0:
 for (int i=0; i<5; i++) calc = (calc << 1) + i;
 break;
 case 1:
 for (int j=0; j<10; j++) calc = (calc << 1) + j;
 break;
 default:
 calc = 7;
 done = 1;
 break;
 }
 for (int k=0; k<calc; k++) cout << ".";
}

27. True or false: The purpose behind the delayed branch is to avoid flushing the pipeline. (2 points)

28. True or false: The purpose behind the delayed load is to avoid flushing the pipeline. (2 points)

29. After which line in the code below does a NOP need to be inserted to provide a delayed load to

avoid a problem with a data dependency? (2 points)

a.) L1 b.) L2 c.) L3 d.) L4 e.) L5 f.) L6

L1: mov al,[1000h] ;Load al w/value from memory

L2: mov ah,[1001h] ;Load ah w/value from memory

L3: add ah,al ;ah += al

L4: dec al ;al--

L5: bne L3 ;Branch if al is not equal to 0

L6: mov [1002h],ah ;Store ah to memory

30. Identify the write-read, write-write, and read-write dependencies in the instruction sequence below

by entering each line pair with a dependency in the correct column of the table to the right. For

example, if L1 and L4 had a write-write dependency (which they don’t), you would enter L1-L4 in

the column labeled “write-write”. (4 points)

L1: R3 = R2 + R5

L2: R3 = R3 + 16

L3: R3 = R3 + R5

L4: R5 = R1 – R2

L5: R1 = R3 + 32

* - indicates required pairs. The other pairs are implied by the required pairs.

For problems 31, 32, and 33, use the figure to the right

which represents the execution of 6 instructions on an

"in-order-issue/in-order-completion" machine.

Assume that there is only one data dependency in the

sequence, a true data dependency (write-read) between

I1 and I4, i.e., I4 depends on the completion of I1

before it can execute. As for resource dependencies,

assume that any instructions that share a column in the

execute stage require the same resource.

31. In an out-of-order-issue/out-of-order-completion architecture, what is the earliest cycle I4 could

enter the execute stage? (2 points)

a.) 1 b.) 2 c.) 3 d.) 4 e.) 5 f.) 6 f.) 7 g.) 8

I4 depends on I1 for its data, but the only reason it is waiting for I2 in the above diagram is that for

in-order-issue/in-order-completion, all instructions from the previous decode cycle must be in the

write pipes before the next instructions can enter the execute pipes. Therefore, I4 can be executed

with I2 (cycle 4) in an out-of-order completion architecture. Since I3 doesn’t have any

dependencies, it could enter the pipe as soon as I3.

32. In an out-of-order-issue/out-of-order-completion architecture, what is the earliest cycle I5 could

enter the execute stage? (2 points)

a.) 1 b.) 2 c.) 3 d.) 4 e.) 5 f.) 6 f.) 7 g.) 8

In an out-order-issue/out-of-order completion architecture, I5 (without any dependencies) requires

two things: it must have entered through the decode operation and it’s execution resource must be

available, i.e., all previous instructions that used I5’s execution pipe (I1 and I2) must be finished

with it. With four instructions in front of it, I5 isn’t brought into the decode pipe until cycle 3.

After that, it must wait for I1 and I2 to be done with its execution pipe. That happens at cycle 5.

Therefore, I5 can enter the pipe at cycle 5.

Decode Execute Write Cycle

I1 I2 1

 I2 I1 2

I3 I4 I1 3

I3 I4 I2 4

I5 I6 I4 I3 I1 I2 5

I5 I6 I3 6

 I5 I6 I3 I4 7

 I5 I6 8

write-read

L1 – L2*

L1 – L3

L2 – L3*

L1 – L5

L2 – L5

L3 – L5*

write-write

L1 – L2*

L1 – L3

L2 – L3*

read-write

L1 – L4*

L2 – L3*

L4 – L5*

L3 – L4*

33. In an out-of-order-issue/out-of-order-completion architecture, what is the earliest cycle I3 could

enter the execute stage? (2 points)

a.) 1 b.) 2 c.) 3 d.) 4 e.) 5 f.) 6 f.) 7 g.) 8

Just like I5, in an out-order-issue/out-of-order completion architecture, I3 must have finished with

the decode operation and it’s execution resource must be available. No other instructions are

shown to be sharing the same execution pipe with I3, so all we have to do is get I3 from the

decode pipe. With two instructions in front of it, I3 isn’t brought into the decode pipe until cycle 2.

Therefore, I3 can enter the pipe at cycle 3, i.e., right after it finishes being decoded.

34. Multiple Instruction/Multiple Data Stream architectures are referred to as tightly coupled when:

(2 points)

a.) they communicate over a local area network (LAN)

b.) the network they are on is dedicated to the system, i.e., there is no other traffic

c.) they share a single hard drive or RAID for storage across a network

d.) they communicate through a shared memory

e.) none of the above

35. Which Multiple Instruction/Multiple Data Stream architecture is better suited to processes that

require a high level of interaction, loosely coupled or tightly coupled? (2 points)

 a.) loosely coupled b.) tightly coupled

36. A cluster is an example of: (2 points)

a.) a single instruction/single data stream architecture

b.) a single instruction/multiple data stream architecture

c.) a multiple instruction/single data stream architecture

d.) a tightly coupled multiple instruction/multiple data stream architecture

e.) a loosely coupled multiple instruction/multiple data stream architecture

37. Assume a multiprocessor system uses the MESI protocol. If the current state of a line in processor

A's cache is modified, do valid copies of the data exist in other caches? (2 points)

a.) yes b.) no c.) cannot tell

38. Assume a multiprocessor system uses the MESI protocol. If the current state of a line in processor

A's cache is exclusive, do valid copies of the data exist in other caches? (2 points)

a.) yes b.) no c.) cannot tell

39. Assume a multiprocessor system uses the MESI protocol. If the current state of a line in processor

A's cache is exclusive and processor B loads the same line into its cache, what is the new state of

that line in processor A's cache? (2 points)

a.) modified b.) exclusive c.) shared d.) invalid e.) cannot be determined

40. Which SMP bus configuration is simplest due to its architecture being closest to the single-

processor architecture? (2 points)

a.) time-shared bus b.) multiport memory c.) central controller

41. Which SMP bus configuration is most reliable due to the fact that there is no central point of

failure? (2 points)

a.) time-shared bus b.) multiport memory c.) central controller

42. The snoopy protocol is more suited to the _________________ interconnection method for

symmetric multiprocessors. (2 points)

a.) time-shared bus b.) multiport memory c.) central controller

43. For the four characteristics listed below, identify whether the statement more closely identifies an

SMP system or a cluster. (4 points)

 SMP Cluster

Operation is closer to that of a single processor system

Easier to upgrade incrementally

Lower overall power consumption

Older, more established track record

