Chapter 3. Differentiation

3.1 Tangents and the Derivative at a Point

Note. We now return to an idea introduced in Section 2.1: Slopes of lines tangent to curves.

Definition. Slope and Tangent Line.

The slope of the curve \(y = f(x) \) at the point \(P(x_0, f(x_0)) \) is the number

\[
m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},
\]

provided the limit exists. The tangent line to the curve at \(P \) is the line through \(P \) with this slope.

Figure 3.1, page 122
Example. Page 125 number 7.

Definition. Derivative at a Point.

The derivative of a function f at a point x_0, denoted $f'(x_0)$, is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

provided this limit exists.

Example. Page 125 number 26.

Note. Since the derivative of a function at a point is a limit of an average rate of change (to recall a topic from Section 2.1), then we see that the derivative can be interpreted as an instantaneous rate of change of the function f with respect to the variable x. For example, if $f(t)$ is the position of a particle at time t, then the instantaneous rate of change of position with respect to time (i.e. the instantaneous velocity) at time $t = t_0$ is

$$f'(t_0) = \lim_{h \to 0} \frac{f(t_0 + h) - f(t_0)}{h},$$

provided the limit exists.

Examples. Page 125 number 28 and Page 126 number 36 (vertical tangents).