Chapter 3. Differentiation

3.2 The Derivative as a Function

Definition. Derivative Function.

The derivative of the function $f(x)$ with respect to the variable x is the function f' whose value at x is

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h},$$

provided the limit exists.

Note. Motivated by Sections 2.1 and 3.1, we see that $f'(x)$ is the slope of the line tangent to $y = f(x)$ as a function of x.

Note. There are a number of ways to denote the derivative of $y = f(x)$:

$$f'(x) = y' = \frac{df}{dx} = \frac{dy}{dx} = \frac{d}{dx}[f].$$
Example. Page 128 Example 2(a). Notice the text uses the “alternative formula” of the derivative.

Note. We can also study “one-sided derivatives” at a point defined as follows:

Right-hand derivative at a:
$$\lim_{h \to 0^+} \frac{f(a + h) - f(a)}{h}$$

Left-hand derivative at b:
$$\lim_{h \to 0^-} \frac{f(b + h) - f(b)}{h}$$

Example. Page 133 number 40.
Note. The function in the previous example is not differentiable at \(x = 1 \). There are a number of reasons as to why a function might not have a derivative at a point. Some of these reasons are illustrated here:

1. a *corner*, where the one-sided derivatives differ.

2. a *cusp*, where the slope of \(PQ \) approaches \(\infty \) from one side and \(-\infty \) from the other.

3. a *vertical tangent*, where the slope of \(PQ \) approaches \(\infty \) from both sides or approaches \(-\infty \) from both sides (here, \(-\infty \)).

4. a *discontinuity* (two examples shown).

From page 130
Theorem 1. Differentiability Implies Continuity

If \(f \) has a derivative at \(x = c \), then \(f \) is continuous at \(x = c \).

Proof. By definition, we need to show that \(\lim_{x \to c} f(x) = f(c) \), or equivalently that \(\lim_{h \to 0} f(c + h) = f(c) \). Then

\[
\lim_{h \to 0} f(c + h) = \lim_{h \to 0} \left(f(c) + \frac{f(c + h) - f(c)}{h} \cdot h \right) \\
= \lim_{h \to 0} f(c) + \lim_{h \to 0} \frac{f(c + h) - f(c)}{h} \cdot \lim_{h \to 0} h \\
= f(c) + f'(c) \cdot 0 \\
= f(c).
\]

Therefore \(f \) is continuous at \(x = c \). \(\text{QED} \)

Examples. Page 155 numbers 48 and 54.