Chapter 4. Applications of Derivatives

4.1 Extreme Values of Functions

Definition. Let \(f \) be a function with domain \(D \). Then \(f(c) \) is the

(a) absolute maximum value on \(D \) if and only if \(f(x) \leq f(c) \) for all \(x \) in \(D \)

(b) absolute minimum value on \(D \) if and only if \(f(x) \geq f(c) \) for all \(x \) in \(D \).

Theorem 1. The Extreme-Value Theorem for Continuous Functions

If \(f \) is continuous at every point of a closed and bounded interval \(I = [a, b] \),
then \(f \) assumes both an absolute maximum value \(M \) and an absolute minimum value \(m \) somewhere in \(I \). That is, there are numbers \(x_1 \) and \(x_2 \) in \(I = [a, b] \) with \(f(x_1) = m, f(x_2) = M \), and \(m \leq f(x) \leq M \) for every \(x \) in \(I = [a, b] \).

Examples. Page 227 numbers 2 and 4.
Definition. Let \(c \) be an interior point of the domain of the function \(f \). Then \(f(c) \) is a

(a) local maximum value if and only if \(f(x) \leq f(c) \) for all \(x \) in some open interval containing \(c \)

(b) local minimum value if and only if \(f(x) \geq f(c) \) for all \(x \) in some open interval containing \(c \).

Theorem 2. Local Extreme Values.

If a function \(f \) has a local maximum value or a local minimum value at an interior point \(c \) of its domain, and if \(f' \) exists at \(c \), then \(f'(c) = 0 \).

Definition. A point in the domain of a function \(f \) at which \(f' = 0 \) or \(f' \) does not exist is a critical point of \(f \).
Note. How to Find the Absolute Extrema of a Continuous Function f on a Closed Interval

To find extrema on a closed and bounded interval, we first find the critical points and then:

Step 1. Evaluate f at all critical points and endpoints.

Step 2. Take the largest and smallest of these values.

Examples. Page 228 number 24, Page 229 numbers 68, 72 and 80.