Theorem 3. The Mean Value Theorem for Definite Integrals.

If \(f \) is continuous on \([a, b]\), then at some point \(c \) in \([a, b]\),

\[
f(c) = \frac{1}{b - a} \int_a^b f(x) \, dx.
\]
Proof of Theorem 3. By the Max-Min Inequality from Section 5.3, we have
\[
\min f \leq \frac{1}{b - a} \int_a^b f(x) \, dx \leq \max f.
\]
Since \(f \) is continuous, \(f \) must assume any value between \(\min f \) and \(\max f \), including \(\frac{1}{b - a} \int_a^b f(x) \, dx \) by the Intermediate Value Theorem. \(Q.E.D. \)

If \(f \) is continuous on \([a, b]\) then the function
\[
F(x) = \int_a^x f(t) \, dt
\]
has a derivative at every point \(x \) in \([a, b]\) and
\[
\frac{dF}{dx} = \frac{d}{dx} \left[\int_a^x f(t) \, dt \right] = f(x).
\]
Proof. Notice that

\[F(x + h) - F(x) = \int_a^{x+h} f(t) \, dt - \int_a^x f(t) \, dt = \int_x^{x+h} f(t) \, dt. \]

So

\[\frac{F(x + h) - F(x)}{h} = \frac{1}{h} [F(x + h) - F(x)] = \frac{1}{h} \int_x^{x+h} f(t) \, dt. \]

Since \(f \) is continuous, Theorem 2 implies that for some \(c \in [x, x + h] \) we have

\[f(c) = \frac{1}{h} \int_x^{x+h} f(t) \, dt. \]

Since \(c \in [x, x + h] \), then \(\lim_{h \to 0} f(c) = f(x) \) (since \(f \) is continuous at \(x \)). Therefore

\[
\frac{dF}{dx} = \lim_{h \to 0} \frac{F(x + h) - F(x)}{h} \\
= \lim_{h \to 0} \frac{1}{h} \int_x^{x+h} f(t) \, dt \\
= \lim_{h \to 0} f(c) = f(x)
\]

Q.E.D.

Example. Page 392 numbers 42 and 44.

If \(f \) is continuous at every point of \([a, b]\) and if \(F \) is any antiderivative of \(f \) on \([a, b]\), then

\[
\int_a^b f(x) \, dx = F(b) - F(a).
\]

Proof. We know from the first part of the Fundamental Theorem (Theorem 3a) that

\[
G(x) = \int_a^x f(t) \, dt
\]

defines an antiderivative of \(f \). Therefore if \(F \) is any antiderivative of \(f \), then \(F(x) = G(x) + k \) for some constant \(k \). Therefore

\[
F(b) - F(a) = [G(b) + k] - [G(a) + k] = G(b) - G(a) = \int_a^b f(t) \, dt - \int_a^a f(t) \, dt = \int_a^b f(t) \, dt - 0 = \int_a^b f(t) \, dt.
\]

QED

Examples. Page 392 numbers 16 and 60.

Example. Find the linearization of \(g(x) = 3 + \int_1^x \sec(t - 1) \, dt \) at \(a = -1 \).