Chapter 5. Integration

5.6 Substitution and Area Between Curves

Note. We can use \(u \)-substitution in definite integrals:

\[
\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u) \, du
\]

where \(u = g(x) \), and \(du = g'(x) \, dx \).

Examples. Page 410 numbers 14a and 18.

Definition. If \(f \) and \(g \) are continuous with \(f(x) \geq g(x) \) throughout \([a, b]\), then the area of the region between the curves \(y = f(x) \) and \(y = g(x) \) from \(a \) to \(b \) is the integral of \([f - g]\) from \(a \) to \(b \):

\[
A = \int_a^b [f(x) - g(x)] \, dx.
\]
5.6 Substitution and Area Between Curves

Note. We will take a heuristic shortcut and take “dx” slices.

Examples. Page 412 numbers 56 and 66, page 413 number 102.

Figure 5.29, page 407