Chapter 10. Infinite Sequences and Series

10.2 Infinite Series

Definition. Given a sequence of numbers \(\{a_n\} \), an expression of the form

\[
\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots + a_n + \cdots
\]

is an *infinite series*. The number \(a_n \) is the \(n^{th} \) term of the series. The *partial sums* of the series are the elements of the sequence

\[
s_1 = a_1 \\

s_2 = a_1 + a_2 \\

s_3 = a_1 + a_2 + a_3 \\

\vdots
\\

s_n = \sum_{k=1}^{n} a_k \\

\vdots
\]

If the sequence of partial sums has a limit \(L \), then we say that the *series converges* to the sum \(L \) and write \(\sum_{n=1}^{\infty} a_n = L \). If the sequence of partial sums of the series does not converge, we say that the series *diverges*.
Definition. A geometric series is a series of the form

\[a + ar + ar^2 + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1} \]

in which \(a\) and \(r\) are fixed real numbers and \(a \neq 0\). The parameter \(r\) is called the ratio of the series.

Theorem. The geometric series

\[a + ar + ar^2 + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1} \]

converges to the sum \(a/(1 - r)\) if \(|r| < 1\) and diverges if \(|r| \geq 1\).

Example. Page 569 Number 2. Notice also Example 4 on page 565.

Example. Example 5 page 565. Consider the partial sums of the series

\[\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \]

and find the sums of the series.

Solution. We can apply the partial fractions idea to find that

\[\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1} \]

Then for the \(n\)th partial sum, we find that

\[s_k = \sum_{n=1}^{k} \frac{1}{n(n+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots + \frac{1}{k \cdot (k+1)} \]

\[= \left(\frac{1}{1} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \cdots + \left(\frac{1}{k-1} - \frac{1}{k} \right) + \left(\frac{1}{k} - \frac{1}{k+1} \right) \]
\[\begin{align*}
&= \frac{1}{1} + \left(\frac{-1}{2} + \frac{1}{2} \right) + \left(\frac{-1}{3} + \frac{1}{3} \right) + \left(\frac{-1}{4} + \frac{1}{4} \right) + \cdots + \left(\frac{-1}{k} + \frac{1}{k} \right) - \frac{1}{k + 1} \\
&= 1 - \frac{1}{k + 1}.
\end{align*} \]

Since \(s_k \to 1 \), then the series sums to 1.

Example. Does the series \(1 - 1 + 1 - 1 + 1 - 1 + \cdots \) converge?

Theorem 7. Test for Divergence

If \(\sum_{n=1}^{\infty} a_n \) converges, then \(\lim_{n \to \infty} a_n = 0 \). Equivalently, if \(\lim_{n \to \infty} a_n \) does not exist or is not 0, then \(\sum_{n=1}^{\infty} a_n \) diverges.

Note. Notice that Theorem 7 is a test for divergence! If \(\lim_{n \to \infty} a_n = 0 \) then it **does not say** that the series converges. As we will see, there are series for which the terms approach 0, but the series still diverges.

Example. Page 569 Number 28.
Theorem 8. If \(\sum_{n=1}^{\infty} a_n = A \) and \(\sum_{n=1}^{\infty} b_n = B \) are convergent series, then

1. **Sum Rule:** \(\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n = A + B. \)

2. **Difference Rule:** \(\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n = A - B. \)

3. **Constant Multiple Rule:** \(\sum_{n=1}^{\infty} k a_n = k \sum_{n=1}^{\infty} a_n = kA \) for any number \(k. \)

Proof. The proof of each follows in a way similar to the proof of Theorem 1 of section 10.1 for sequences. See page 567. \(Q.E.D. \)

Example. Page 569 Number 12.

Note. Similar to Theorem 7 for convergent series, we have the following for divergent series:

Theorem. Every nonzero constant multiple of a divergent series diverges.

If \(\sum_{n=1}^{\infty} a_n \) converges and \(\sum_{n=1}^{\infty} b_n \) diverges, then \(\sum_{n=1}^{\infty} (a_n + b_n) \) and \(\sum_{n=1}^{\infty} (a_n - b_n) \) both diverge.

Example. Page 570 numbers 88 and 90.