Chapter 10. Infinite Sequences and Series

10.9 Convergence of Taylor Series

Note. We still have unanswered questions relevant to the generation of Taylor series from infinitely differentiable functions:

1. When does a Taylor series converge to its generating function?

2. How accurately do a function’s Taylor polynomials approximate the function on a given interval?

Theorem 23. Taylor’s Theorem

If \(f \) and its first \(n \) derivatives \(f', f'', \ldots, f^n \) are continuous on the closed interval between \(a \) and \(b \), and \(f^{(n)} \) is differentiable on the open interval between \(a \) and \(b \), then there exists a number \(c \) between \(a \) and \(b \) such that

\[
 f(b) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!} + \frac{f^{(n+1)}(c)}{(n + 1)!}(x-a)^{n+1}.
\]
Theorem. Taylor’s Formula

If \(f \) is differentiable through order \(n + 1 \) in an open interval \(I \) containing \(a \), then for each \(x \in I \),

\[
f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!} + R_n(x)
\]

where

\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!} (x - a)^{n+1} \text{ for some } c \text{ between } a \text{ and } x.
\]

Note. If we can be insured that the remainder term \(R_n \) goes to 0 as \(n \to \infty \), then the Taylor series will converge to the generating function. This is summarized in the following theorem.

Theorem 24. The Remainder Estimation Theorem.

If there are positive constants \(M \) and \(r \) such that \(|f^{(n+1)}(t)| \leq Mr^{n+1} \) for all \(t \) between \(a \) and \(x \), inclusive, then the remainder term \(R_n(x) \) in Taylor’s Theorem satisfies the inequality

\[
|R_n(x)| \leq M \frac{r^{n+1}|x - a|^{n+1}}{(n + 1)!}.
\]

If these conditions hold for every \(n \) and all the other conditions of Taylor’s Theorem are satisfied by \(f \), then the series converges to \(f(x) \).

Example. Page 613 numbers 2, 16, and 46.