I.5. Lines and Half-Planes in \(\mathbb{C} \)

Recall. The parametric equation for a line in \(\mathbb{R}^2 \) is \((x, y) = (a_1, a_2) + t(b_1, b_2)\) where \(t \in \mathbb{R} \). The line passes through the point \((a_1, a_2)\) (when \(t = 0 \)) and has direction vector \((b_1, b_2)\). So the equation of a line in \(\mathbb{C} \) is \(z = a + tb \) where \(t \in \mathbb{R} \) and \(a, b \in \mathbb{C} \). This can be rearranged as \(t = (z - a) / b \). Since \(t \) is real, the equation of a line in \(\mathbb{C} \) is of the form \(\text{Im}(\frac{z - a}{b}) = 0 \) where \(b \neq 0 \).

Note. Let \(a = 0 \) and \(b = \text{cis}(\beta) \) (i.e., without loss of generality \(|b| = 1 \)). Then the line is \(\text{Im}(z/b) = 0 \). If \(z = r\text{cis}(\theta) \) and \(\text{Im}(z/b) > 0 \), then \(\text{Im}(r\text{cis}(\theta - \beta)) = r\sin(\theta - \beta) > 0 \) and so \(r\sin(\theta - \beta) > 0 \). Now \(\sin(\theta - \beta) > 0 \) is satisfied when \(0 < \theta - \beta < \pi \), or \(\beta < \theta < \pi + \beta \). So \(\text{Im}(z/b) > 0 \) is the half plane:
I.5. Lines and Half-Planes in \mathbb{C}

If we translate all z satisfying $\text{Im}(z/b) > 0$ by an amount a, we get the half plane:

Notice that if we interpret b as a vector and we travel along the line in the direction b, then $\text{Im}\left(\frac{z-a}{b}\right) > 0$ lies to the left of the line and $\text{Im}\left(\frac{z-a}{b}\right) < 0$ lies to the right of the line.

Revised: 1/29/2022