IV.2. Power Series Representations of Analytic Functions

Recall. We still have not shown that an analytic function (i.e., a continuously differentiable function) has a power series representation. We do so in this section. Surprisingly, we use integrals to show this.

Proposition IV.2.1. Let \(\varphi : [a, b] \times [c, d] \to \mathbb{C} \) be a continuous function and define \(g : [c, d] \to \mathbb{C} \) by \(g(t) = \int_a^b \varphi(s, t) \, ds \). Then \(g \) is continuous. Moreover, if \(\frac{\partial \varphi}{\partial t} \) exists and is a continuous function on \([a, b] \times [c, d]\) then \(g \) is continuously differentiable and

\[
g'(t) = \int_a^b \frac{\partial \varphi}{\partial t}(s, t) \, ds.
\]

Note. Proposition 2.1 is Leibniz’s Rule from Advanced Calculus. The proof is based in part on the Fundamental Theorem of Calculus.

Lemma IV.2.A. If \(|z| < 1\) then \(\int_0^{2\pi} \frac{e^{is}}{e^{is} - z} \, ds = 2\pi \).

Note. The text calls the following result “transitory.” However, it will lead us from continuously differentiable to power series.
Proposition IV.2.6. Let \(f : G \to \mathbb{C} \) be analytic and suppose \(\overline{B}(a; r) \subseteq G \ (r > 0) \). If \(\gamma(t) = a + re^{it} \), and \(0 \leq t \leq 2\pi \). Then
\[
f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} \, dw
\]
for \(|z - a| < r \).

Note. We use Proposition IV.2.6 to introduce series as follows:
\[
\frac{1}{w - z} = \frac{1}{w - a} \frac{1}{1 - \frac{z-a}{w-a}} = \frac{1}{w - a} \sum_{n=0}^{\infty} \left(\frac{z-a}{w-a} \right)^n
\]
since \(|z - a| < r = |w - a| \). We then get
\[
\frac{f(w)}{w-z} = \frac{f(w)}{w-a} \sum_{n=0}^{\infty} \left(\frac{z-a}{w-a} \right)^n
\]
and with \(\gamma(t) = a + re^{it} \) for \(t \in [0, 2\pi] \) we have by Proposition IV.2.6 that
\[
f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} \, dw = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-a} \sum_{n=0}^{\infty} \left(\frac{z-a}{w-a} \right)^n \, dw
\]
\[
= \frac{1}{2\pi i} \int_{\gamma} \left(\frac{f(w)}{w-a} \lim_{N \to \infty} \sum_{n=0}^{N} \left(\frac{z-a}{w-a} \right)^n \right) \, dw = \lim_{N \to \infty} \left(\frac{1}{2\pi i} \int_{\gamma} \left(\frac{f(w)}{w-a} \sum_{n=0}^{N} \left(\frac{z-a}{w-a} \right)^n \right) \, dw \right)
\]
\[
= \lim_{N \to \infty} \sum_{n=0}^{N} \left[\frac{1}{2\pi i} \int_{\gamma} \left(\frac{f(w)}{w-a} \left(\frac{z-a}{w-a} \right)^n \right) \, dw \right] = \sum_{n=0}^{\infty} \left[\left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} \, dw \right) (z-a)^n \right],
\]
provided that the equality in red holds. This requires the following.

Lemma IV.2.7. Let \(\gamma \) be a rectifiable curve in \(\mathbb{C} \) and suppose that \(F_n \) and \(F \) are continuous on \(\{ \gamma \} \). If \(F \) is the uniform limit of \(F_n \) on \(\{ \gamma \} \) then
\[
\int_{\gamma} F = \int_{\gamma} (\lim F_n) = \lim \left(\int_{\gamma} F_n \right).
\]
Note. Now to FINALLY resolve our definition of analytic with that used by the real analysts.

Theorem IV.2.8. Let f be analytic in $B(a; R)$. Then $f(z) = \sum_{n=0}^{\infty} a_n(z - a)^n$ for $|z - a| < R$ where $a_n = f^{(n)}(a)/n!$ and this series has radius of convergence $\geq R$.

Note. Three quick corollaries are:

Corollary IV.2.11. If $f : G \to \mathbb{C}$ is analytic and $a \in G$ then $f(z) = \sum_{n=0}^{\infty} a_n(z - a)^n$ for $|z - a| < R$ where $R = d(a, \partial G)$.

Corollary IV.2.12. If $f : G \to \mathbb{C}$ is analytic then f is infinitely differentiable.

Corollary IV.2.13. If $f : G \to \mathbb{C}$ is analytic and $\overline{B}(a; r) \subseteq G$ then

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - a)^{n+1}} \, dw$$

where $\gamma(t) = a + re^{it}$ and $t \in [0, 2\pi]$.

Note. We can use Corollary 2.13 to evaluate integrals using derivatives.

Example. (Page 74 #7b.) Evaluate $\int_{\gamma} \frac{dz}{z - a}$. Let $f(w) = 1$ and $n = 0$. Answer: $2\pi i$.
Note. The following is an integral step in our proof of the Fundamental Theorem of Algebra.

Theorem IV.2.14. Cauchy’s Estimate. Let \(f \) be analytic in \(B(a; R) \) and suppose \(|f(z)| \leq M \) for all \(z \in B(a; R) \). Then

\[
|f^{(n)}(a)| \leq \frac{n!M}{R^n}.
\]

Proposition IV.2.15. Let \(f \) be analytic in \(B(a; R) \) and suppose \(\gamma \) is a closed rectifiable curve in \(B(a; R) \). Then \(f \) has a primitive in \(B(a; R) \) and so \(\int_\gamma f = 0 \).

Revised: 12/5/2017