V.3. The Argument Principle

Note. In this section, we concentrate on zeros and poles of a function. In the Argument Principle we relate the value of an integral to winding numbers of zeros or poles. In Rouche’s Theorem, a quantity related to the number of zeros and the number of poles is given which is preserved between functions satisfying a certain (inequality) relationship. The specific class of functions of concern is defined in the following.

Definition V.3.3. If G is open and f is a function defined and analytic on G except for poles, then f is a meromorphic function on G.

Note. If f is meromorphic on G, then we can define $f : G \to \mathbb{C}_\infty$ by setting $f(z) = \infty$ at each pole of f. By Exercise V.3.4 f is then a continuous mapping where we treat \mathbb{C}_∞ as a metric space with the metric given in section I.6.

Note. If f is analytic at $z = a$ and f has a zero of order m at $z = a$, then $f(z) = (z - a)^m g(z)$ where $g(a) \neq 0$ be Definition IV.3.1. Hence

$$
\frac{f'(z)}{f(z)} = \frac{m(z - a)^{m-1}g(z) + (z - a)^m g'(z)}{(z - a)^m g(z)} = \frac{m}{z - a} + \frac{g'(z)}{g(z)}. \quad (3.1)
$$

Since $g(a) \neq 0$, then g'/g is analytic “near” $z = a$.
Note. If \(f \) has a pole of order \(m \) at \(z = a \), then \(f(z) = (z - a)^{-m}g(z) \) where \(g \) is analytic at \(z = a \) and \(g(a) \neq 0 \) by the definition of pole of order \(m \) and Proposition 1.6. Then

\[
\frac{f'(z)}{f(z)} = \frac{-m(z - a)^{-m-1}g(z) + (z - a)^{-m}g'(z)}{(z - a)^{-m}g(z)} = \frac{-m}{z - a} + \frac{g'(z)}{g(z)}. \tag{3.2}
\]

Again, since \(g(a) \neq 0 \), then \(g'/g \) is analytic “near” \(z = a \).

Theorem V.3.4. Argument Principle.

Let \(f \) be meromorphic in \(G \) with poles \(p_1, p_2, \ldots, p_m \) and zeros \(z_1, z_2, \ldots, z_n \) repeated according to multiplicity. If \(\gamma \) is a closed rectifiable curve in \(G \) where \(\gamma \approx 0 \) and not passing through \(p_1, p_2, \ldots, p_m, z_1, z_2, \ldots, z_n \), then

\[
\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} \, dz = \sum_{k=1}^{n} n(\gamma; z_k) - \sum_{j=1}^{m} n(\gamma; p_j).
\]

Note. Given the representation of \(f'/f \) given in the proof, we see that winding numbers naturally arise here. Also, we would expect a primitive of \(f'/f \) to be \(\log(f) \), which of course does not exist on \{\gamma\} (unless the winding numbers are 0), but again this hints at multiples of \(2\pi i \).

Theorem V.3.6. Let \(f \) be meromorphic on region \(G \) with zeros \(z_1, z_2, \ldots, z_n \) and poles \(p_1, p_2, \ldots, p_m \) repeated according to multiplicity. If \(g \) is analytic on \(G \) and \(\gamma \) is a closed rectifiable curve in \(G \) where \(\gamma \approx 0 \) and \(\gamma \) does not pass through any zero or pole of \(f \), then

\[
\frac{1}{2\pi i} \int_{\gamma} g(z) \frac{f'(z)}{f(z)} \, dz = \sum_{k=1}^{n} g(z_k)n(\gamma; z_k) - \sum_{j=1}^{m} g(p_j)n(\gamma; p_j).
\]
Note. The proof of Theorem V.3.6 is to be given in Exercise V.3.1.

Proposition V.3.7. Let \(f \) be analytic on an open set containing \(\overline{B}(a; R) \) and suppose that \(f \) is one to one on \(B(a; R) \). If \(\Omega = f[B(a; R)] \) and \(\gamma \) is the circle \(|z - a| = R \), then \(f^{-1}(\omega) \) is defined for each \(\omega \in \Omega \) by
\[
f^{-1}(\omega) = \frac{1}{2\pi i} \int_{\gamma} \frac{zf'(z)}{f(z) - \omega} \, dz.
\]

Note. We now state as “Rouche’s Theorem” what is actually a generalization of the traditional version (see Conway’s reference at the bottom of page 125).

Theorem V.3.8. Rouche’s Theorem.

Suppose \(f \) and \(g \) are meromorphic in a neighborhood of \(\overline{B}(a; R) \) with no zeros or poles on the circle \(\gamma(t) = a + Re^{it}, \, t \in [0, 2\pi] \). Suppose \(Z_f \) and \(Z_g \) are the number of zeros inside \(\gamma \), and \(P_f \) and \(P_g \) are the number of poles inside \(\gamma \) (counted according to their multiplicities) and that \(|f(z) + g(z)| < |f(z)| + |g(z)| \) on \(\gamma \). Then \(Z_f - P_f = Z_g - P_g \).

Note. Rouche’s Theorem can be further generalized by replacing the circle \(\gamma = \{ z \mid |z - a| = R \} \) with any closed rectifiable curve \(\gamma \) where \(\gamma \approx 0 \) in \(G \), and with the introduction of winding numbers (this is Exercise V.3.7).
Note. Ahlfors in his *Complex Analysis* (McGraw Hill, 1979, page 153) state Rouche’s Theorem as:

Let $\gamma \approx 0$ in region G where $n(\gamma; z)$ is either 0 or 1 for any point $z \neq \{\gamma\}$. Let f and g be analytic in G and for all $z \in \{\gamma\}$ suppose $|f(z) - g(z)| < |f(z)|$. Then f and g have the same number of zeros enclosed by γ.

If f and g are analytic inside and on a simple closed curve C and if $|g(z)| < |f(z)|$ on C, then $f(z) + g(z)$ and $f(z)$ have the same number of zeros inside C.

This version follows from Ahlfors’ version by replacing Ahlfors’ $g(z)$ with $f(z) + g(z)$.

Note. Rouche’s Theorem can be used to give another easy (analytic) proof of the Fundamental Theorem of Algebra.

Theorem. Fundamental Theorem of Algebra.

If $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_2z^2 + a_1z + a_0$ is a (complex) polynomial of degree n, then p has n zeros (counting multiplicities).

Proof. We have

$$
\frac{p(z)}{z^n} = 1 + \frac{a_{n-1}}{z} + \cdots + \frac{a_2}{z^{n-2}} + \frac{a_1}{z^{n-1}} + \frac{a_0}{z^n}
$$
for $z \neq 0$, and $\lim_{z \to \infty} \frac{p(z)}{z^n} = 1$. So with $\varepsilon = 1$, we have that there exists $R > 0$ such that for all $|z| > R$ we have $\left| \frac{p(z)}{z^n} - 1 \right| < \varepsilon = 1$. That is, for $|z| > R$, $|p(z) - z^n| < |z^n|$. With $f(z) = z^n$ and $g(z) = p(z)$, we have by Ahlfors’ version of Rouche’s Theorem (of course, this also follows from Conway’s version as well) that, since $f(z) = z^n$ has n zeros, then $g(z) = p(z)$ has the same number of zeros.

Revised: 8/8/2017