The Evolution of Machine Tools

ETSU ENTC 3020
Technology & Society

Earliest Tools
• Primitive Hand tools
 ▪ Weapons & Tools
 ▪ Mineral, Bone, & Wood
• Stabbing, Cutting, Scraping, & Drilling

Early Tools
• Wheel
 ▪ Efficient Transportation
• Lever
 ▪ Mechanical Advantage
• Inclined Plane & Screw

A-frame Pole Lathe

Pole Lathe
• Medieval Machine
• Turned Round Parts
• “Bodgers”
 ▪ Itinerant Woodworkers
• Carpenters
• Blacksmiths
• Metalworkers/Jewlers
• Made Furniture, Home, & Farm Implements

Pole Lathes
• Non-continuous Cutting Action
• “One man’s foot power” motor
• Slow, Tedious Process
Wheel Lathe

- Replace Pole with a Wheel
- Hand-cranked by assistant
- Continuous Cutting & Contouring

Powered Lathes

- Continuous Turning
- Water wheels
 - Central, Overhead Shafts
 - Leather belts transfer power to individual machines
- Factory System

Treadle Wheel Lathe

- Heavy Flywheel & Foot Treadle
- Solo Operation
- Continuous Cutting & Contouring

Engine Lathes

- Invented by the English Inventor Henry Maudsley in 1800
- First powered lathe with a “Lead Screw”
 - Couples rotation of the spindle to the movement of the carriage (tool holder)
 - Cut accurate screw (i.e., another lead screw)
 - A machine that builds itself, jump starts the...

Treadle Lathe

Industrial Revolution

- Lathes
- Steam Engine
 - Accurate cylinders & pistons
- Steel
 - Tough for cutting tools
 - Ductile for boilers & rails
Modern Engine Lathe

- Electric Motor
- Geared Head
 - Variable Spindle Speeds (Rotation)
 - Variable & Accurate Feeds (Tool Movement)
- Tolerances of 0.001 inch
- Multiple Screws

Modern Vertical Mill

- Electric Motor
- Variable Spindle Speeds (Rotation)
- Accurate Table Position
 - 3-Axis (X, Y, & Z)
- Tilt “head”
 - 2 Degrees of Freedom
- Tolerance of 0.001"
- Multiple Tool shapes

Numerical Control

- Integrate machine tool with digital computer
 - Compute Complex Cutter Paths
 - Accurately Control Axes Motors
- Position feedback
 - Closed – Servo Motors & Position Sensors
 - Open – Stepper Motors
- Limited capability
 - Programmed Moves
 - Little Intelligence

CNC Devices

- CNC is “Computer Numerical Control”
- Increased Capability
- More Memory
- Longer Programs
- Complex Operations

Post-World War II Era

- Cold War with Soviet Union
- High Performance Aircraft
 - Jet engines & aircraft structures
 - Very complex forms, mathematically determined
- Computing Devices
 - Mechanical Using Gears and Cams
 - Electrical Using Circuits and Tubes
- Transistors
 - Invented in the mid-1940s at Bell Labs
- Integrated Circuits
 - Invented in the 1960s at Texas Instruments

CADD

- Computer-Aided Design & Drafting
- Workstation & PC-based Systems
- Accurate 2D and 3D Models
- Rapid Revisions
- Multiple Formats
 - Hardcopy Drawings
 - Application Data Sharing (e.g., CAM, FEA, animations, etc.)
CNC Vertical Mill

- Programs
 - Complex
 - Long
- Fast
- Accurate
- High Quality
- Adaptable

CNC Router

- Large Parts
 - 4'x8' Sign
- Wood, Plastics, & Soft Metals
- 2-½D & 3D Contouring
- CAD-CAM Software Interface
- Faster & Better

3D Rapid Prototyping

- Stereolithography
 - 3D Printing
- Start with a 3D CADD Model
 - “Slice” Each Z-axis Level
 - X-Y Part Paths & Supports
- Multiple Materials
 - Metal, Polymers (ABS, Nylon), Wax, Paper, etc.
 - “Real” Parts for Form, Fit & Function

3 Questions

- Does automation kill or create jobs?
- What’s more important: Quality or Speed?
- Why Customize Products?

3D Modeling

- Surfaces & Solids
- Import
 - 2D Data
 - 3D Data
- Export
 - Virtual Models
 - FEA
 - STL
 - Animations

Image Credits

- Images of modern era engine lathes, vertical milling machines, CNC Mills & routers, CADD screenshots, and stereolitographic parts courtesy of East Tennessee State University Department of Technology & Geomatics.

Presentation created by Bill Hemphill Feb. 18, 2005
Copyright © 2005 by Bill Hemphill ◆ All Rights Reserved