Abstract

These class notes are designed for use of the instructor and students of the course Physics 4617/5617: Quantum Physics. This edition was last modified for the Fall 2006 semester.
IV. Formulism and Techniques

A. Linear Algebra.

1. In classical mechanics, vectors are typically defined in Cartesian coordinates as

\[\alpha = \alpha_x \hat{x} + \alpha_y \hat{y} + \alpha_z \hat{z}, \] (IV-1)

with the “hat” unit vector notation or

\[\alpha = \alpha_x i + \alpha_y j + \alpha_z k, \]

in the \(ijk \) unit vector notation (I prefer the use of the hat notation).

a) Vectors are added via the component method such that

\[\alpha \pm \beta = (\alpha_x \pm \beta_x) \hat{x} + (\alpha_y \pm \beta_y) \hat{y} + (\alpha_z \pm \beta_x) \hat{z}. \] (IV-2)

b) However in quantum mechanics, often we will have more than 3 coordinates to worry about — indeed, sometimes there may be an infinite amount of coordinates!

c) As such, we will introduce a new notation (the so-called \textbf{bra-and-ket} notation) to describe vectors:

\[\alpha \equiv |\alpha\rangle \quad (\text{ket}) \]
\[\alpha^* \equiv \langle \alpha | \quad (\text{bra}) \] (IV-3)

that was first introduced by Paul Dirac.

d) The Dirac bra-and-ket notation has the following meanings:

\[\langle \alpha | \beta \rangle = \sum_{n=1}^{N} \alpha_n^* \beta_n \] (IV-4)

if vectors \(\alpha \) and \(\beta \) represent discrete (\(i.e. \), bound) states and

\[\langle \alpha | \beta \rangle = \int_{-\infty}^{\infty} \alpha^* \beta \ d\tau \] (IV-5)
for continuous (i.e., free) states given by functions α and β, with $d\tau = dx$ in 1-D space and $d\tau = dx\,dy\,dz$ in 3-D Cartesian space.

2. A **vector space** consists of a set of **vectors** $(|\alpha\rangle, |\beta\rangle, |\gamma\rangle, ...)$, together with a set of (real or complex) **scalars** $(a, b, c, ...)$, which are subject to 2 operations:

a) **Vector addition:** The *sum* of any 2 vectors is another vector:

$$|\alpha\rangle + |\beta\rangle = |\gamma\rangle . \quad \text{(IV-6)}$$

i) Vector addition is **commutative**:

$$|\alpha\rangle + |\beta\rangle = |\beta\rangle + |\alpha\rangle . \quad \text{(IV-7)}$$

ii) Vector addition is **associative**:

$$|\alpha\rangle + (|\beta\rangle + |\gamma\rangle) = (|\alpha\rangle + |\beta\rangle) + |\gamma\rangle . \quad \text{(IV-8)}$$

iii) There exists a **zero** (or **null**) **vector**, $|0\rangle$, with the property that

$$|\alpha\rangle + |0\rangle = |\alpha\rangle , \quad \text{(IV-9)}$$

for every vector $|\alpha\rangle$.

iv) For every vector $|\alpha\rangle$ there is an associated **inverse vector** $(|-\alpha\rangle)$ such that

$$|\alpha\rangle + |-\alpha\rangle = |0\rangle . \quad \text{(IV-10)}$$

b) **Scalar multiplication:** The *product* of any scalar with any vector is another vector:

$$a|\alpha\rangle = |\gamma\rangle . \quad \text{(IV-11)}$$

IV–2
i) Scalar multiplication is **distributive** with respect to vector addition:

\[a(|\alpha\rangle + |\beta\rangle) = a|\alpha\rangle + a|\beta\rangle , \quad \text{(IV-12)} \]

and with respect to scalar addition:

\[(a + b)|\alpha\rangle = a|\alpha\rangle + b|\alpha\rangle . \quad \text{(IV-13)} \]

ii) It is also **associative**:

\[a(b|\alpha\rangle) = (ab)|\alpha\rangle . \quad \text{(IV-14)} \]

iii) Multiplications by the **null** and **unit vector** are

\[0|\alpha\rangle = |0\rangle; \quad 1|\alpha\rangle = |\alpha\rangle . \quad \text{(IV-15)} \]

(Note that \(|-\alpha\rangle = (-1)|\alpha\rangle.|\)

c) A **linear combination** of the vectors \(|\alpha\rangle, |\beta\rangle, |\gamma\rangle, ...\) is an expression of the form

\[a|\alpha\rangle + b|\beta\rangle + c|\gamma\rangle + \cdots . \]

i) A vector \(|\lambda\rangle\) is said to be **linearly independent** of the set \(|\alpha\rangle, |\beta\rangle, |\gamma\rangle, ...\) if it cannot be written as a linear combination of them (e.g., unit vectors \(\hat{x}, \hat{y}, \text{ and } \hat{z}\)).

ii) A collection of vectors is said to **span** the space if *every* vector can be written as a linear combination of the members of this set.

iii) A set of *linearly independent* vectors that spans the space is called a **basis** \(\Rightarrow \hat{x}, \hat{y}, \hat{z}\) define the Cartesian basis.
iv) The number of vectors in any basis is called the **dimension** of the space. Here we will introduce the *finite* bases (analogous to unit vectors),

\[|e_1\rangle, |e_2\rangle, \ldots, |e_n\rangle, \]

of any given vector:

\[|\alpha\rangle = a_1|e_1\rangle + a_2|e_2\rangle + \cdots + a_n|e_n\rangle, \quad (IV-16) \]

which is uniquely represented by the (ordered) *n*-tuple of its **components**:

\[|\alpha\rangle \leftrightarrow (a_1, a_2, \ldots, a_n). \quad (IV-17) \]

v) It is often easier to work with components than with the abstract vectors themselves. Use whatever method to which you are most comfortable.

3. In 3 dimensions we encounter 2 kinds of vector products: the *dot product* and the *cross product*. The latter does not generalize in any natural way to *n*-dimensional vector spaces, but the former *does* and is called the **inner product**.

a) The inner product of 2 vectors (\(|\alpha\rangle\) and \(|\beta\rangle\)) is a complex number (which we write as \(\langle \alpha|\beta\rangle\)), with the following properties:

\[\langle \beta|\alpha \rangle = \langle \alpha|\beta \rangle^* \quad (IV-18) \]

\[\langle \alpha|\alpha \rangle \geq 0, \quad \& \quad \langle \alpha|\alpha \rangle = 0 \Leftrightarrow |\alpha\rangle = |0\rangle \quad (IV-19) \]

\[\langle \alpha|(b|\beta\rangle + c|\gamma\rangle) = b\langle \alpha|\beta\rangle + c\langle \alpha|\gamma\rangle. \quad (IV-20) \]

b) A vector space with an inner product is called an **inner product space**.

c) Because the inner product of any vector with itself is a non-negative number (Eq. IV-19), its square root is **real**
we call this the norm (think of this as the length) of the vector:

\[\| \alpha \| \equiv \sqrt{\langle \alpha | \alpha \rangle} . \]

(IV-21)

d) A unit vector, whose norm is 1, is said to be normalized.

e) Two vectors whose inner product is zero are called orthogonal \(\Rightarrow \) a collection of mutually orthogonal normalized vectors,

\[\langle \alpha_i | \alpha_j \rangle = \delta_{ij} , \]

(IV-22)

is called an orthonormal set, where \(\delta_{ij} \) is the Kronecker delta.

f) Components of vectors can be written as

\[a_i = \langle e_i | \alpha \rangle . \]

(IV-23)

g) The conditions given in Eqs. (IV-18,19,20) give rise to the **Schwarz inequality** which states that

\[|\langle \alpha | \beta \rangle|^2 \leq \langle \alpha | \alpha \rangle \langle \beta | \beta \rangle \]

(IV-24)

(see its proof in Example IV-1). Note that the Schwarz inequality holds only if the vectors \(|\alpha \rangle \) and \(|\beta \rangle \) are colinear \((i.e., \) proportional to each other: \(|\alpha \rangle = c |\beta \rangle \)).

h) We can define the (complex) angle between \(|\alpha \rangle \) and \(|\beta \rangle \) by the formula

\[\cos \theta = \frac{\langle \alpha | \beta \rangle \langle \beta | \alpha \rangle}{\sqrt{\langle \alpha | \alpha \rangle \langle \beta | \beta \rangle}} . \]

(IV-25)

4. A linear transformation \((\hat{T}, \text{the hat on an operator from this point forward will imply that the operator is a linear transformation — don’t confuse it with the hat of a unit vector}) \) takes
each vector in a vector space and “transforms” it into some other vector \((|\alpha\rangle \rightarrow |\alpha'\rangle = \hat{T}|\alpha\rangle)\), with the proviso that the operator is linear

\[
\hat{T}(a|\alpha\rangle + b|\beta\rangle) = a(\hat{T}|\alpha\rangle) + b(\hat{T}|\beta\rangle).
\]

(IV-26)

a) We can write the linear transformation of basis vectors as

\[
\hat{T}|e_j\rangle = \sum_{i=1}^{n} T_{ij}|e_i\rangle, \quad (j = 1, 2, ..., n),
\]

(IV-27)

hence the \(\hat{T}\) operator is a tensor.

b) If \(|\alpha\rangle\) is an arbitrary vector:

\[
|\alpha\rangle = a_1|e_1\rangle + \cdots + a_n|e_n\rangle = \sum_{j=1}^{n} a_j|e_j\rangle,
\]

(IV-28)

then

\[
\hat{T}|\alpha\rangle = \sum_{j=1}^{n} a_j(\hat{T}|e_j\rangle) = \sum_{j=1}^{n} \sum_{i=1}^{n} a_j T_{ij}|e_i\rangle = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} T_{ij} a_j \right) |e_i\rangle.
\]

(IV-29)

\(\hat{T}\) takes a vector with components \(a_1, a_2, ..., a_n\) into a vector with components

\[
a'_i = \sum_{j=1}^{n} T_{ij} a_j.
\]

(IV-30)

c) If the basis is orthonormal, it follows from Eq. (IV-27) that

\[
T_{ij} = \langle e_i|\hat{T}|e_j\rangle,
\]

(IV-31)

or in matrix notation

\[
T = \begin{pmatrix}
T_{11} & T_{12} & \cdots & T_{1n} \\
T_{21} & T_{22} & \cdots & T_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
T_{n1} & T_{n2} & \cdots & T_{nn}
\end{pmatrix}.
\]

(IV-32)
d) The sum of 2 linear transformations is

\[(\hat{S} + \hat{T})|\alpha\rangle = \hat{S}|\alpha\rangle + \hat{T}|\alpha\rangle , \quad (IV-33)\]

or, again, in matrix notation,

\[U = S + T \iff U_{ij} = S_{ij} + T_{ij} . \quad (IV-34)\]

e) The product of 2 linear transformations \((\hat{S}\hat{T})\) is the net effect of performing them in succession — first \(\hat{T}\), the \(\hat{S}\). In matrix notation:

\[U = ST \iff U_{ik} = \sum_{j=1}^{n} S_{ij}T_{jk} ; \quad (IV-35)\]

this is the standard rule for matrix multiplication — to find the \(ik^{th}\) element of the product, you look at the \(i^{th}\) row of \(S\) and the \(k^{th}\) column of \(T\), multiply corresponding entries, and add.

f) The transpose of a matrix \((\tilde{T})\) is the same set of elements in \(T\), but with the rows and columns interchanged:

\[\tilde{T} = \begin{pmatrix} T_{11} & T_{21} & \cdots & T_{n1} \\ T_{12} & T_{22} & \cdots & T_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ T_{1n} & T_{2n} & \cdots & T_{nn} \end{pmatrix} . \quad (IV-36)\]

Note that the transpose of a column matrix is a row matrix!

g) A square matrix is symmetric if it is equal to its transpose (reflection in the main diagonal — upper left to lower right — leaves it unchanged); it is antisymmetric if this operation reverses the sign:

\[
\text{SYMMETRIC: } \tilde{T} = T ; \quad \text{ANTISYMMETRIC: } \tilde{T} = -T .
\]

\[(IV-37)\]
h) The (complex) **conjugate** \((T^*)\) is obtained by taking the complex conjugate of every element:

\[
T^* = \begin{pmatrix}
T_{11}^* & T_{12}^* & \cdots & T_{1n}^* \\
T_{21}^* & T_{22}^* & \cdots & T_{2n}^* \\
\vdots & \vdots & \ddots & \vdots \\
T_{n1}^* & T_{n2}^* & \cdots & T_{nn}^*
\end{pmatrix}; \quad a^* = \begin{pmatrix}
a_1^* \\
a_2^* \\
\vdots \\
a_n^*
\end{pmatrix}. \quad (IV-38)
\]

i) A matrix is **real** if all its elements are real and **imaginary** if they are all imaginary:

REAL: \(T^* = T\) ; **IMAGINARY:** \(T^* = -T\) . \((IV-39) \)

j) A square matrix is **Hermitian** \((\text{or} \text{self-adjoint as defined by} T^\dagger \equiv \tilde{T}^*)\) if it is equal to its Hermitian conjugate; if Hermitian conjugation introduces a minus sign, the matrix is **skew Hermitian** \((\text{or} \text{anti-Hermitian}): \)

HERMITIAN: \(T^\dagger = T\) ; **SKEW HERMITIAN:** \(T^\dagger = -T\) . \((IV-40) \)

k) With this notation, the inner product of 2 vectors (with respect to an orthonormal basis), can be written in matrix form:

\[
\langle \alpha | \beta \rangle = a^\dagger b . \quad (IV-41)
\]

l) Matrix multiplication is not, in general, commutative \((ST \neq TS)\) — the difference between 2 orderings is called the **commutator**:

\[
[S, T] \equiv ST - TS . \quad (IV-42)
\]

It can also be shown that one can write the following commutator relation:

\[
[\hat{A} \hat{B}, \hat{C}] = \hat{A} [\hat{B}, \hat{C}] + [\hat{A}, \hat{C}] \hat{B} . \quad (IV-43)
\]

Exercise: Prove Eq. \((IV-43)\).
m) The transpose of a product is the product of the transpose in reverse order:

\[(\tilde{S}\tilde{T}) = \tilde{T}\tilde{S},\quad (IV-44)\]

and the same goes for Hermitian conjugates:

\[(ST)^\dagger = T^\dagger S^\dagger.\quad (IV-45)\]

d) The unit matrix is defined by

\[
1 = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
\]

(iv-46)

In other words,

\[1_{ij} = \delta_{ij}.\quad (IV-47)\]

o) The inverse of a matrix (written T^{-1}) is defined by

\[T^{-1}T = TT^{-1} = 1.\quad (IV-48)\]

i) A matrix has an inverse if and only if its determinant is nonzero; in fact

\[T^{-1} = \frac{1}{\det T} \tilde{C} = \frac{1}{|T|} \tilde{C},\quad (IV-49)\]

where C is the matrix of cofactors.

ii) The cofactor of element T_{ij} is $(-1)^{i+j}$ times the determinant of the submatrix obtained from T by erasing the i^{th} row by the j^{th} column.

iii) As an example for taking the inverse of a matrix, let’s assume that T is a 3x3 matrix of form

\[
T = \begin{pmatrix}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{pmatrix}
\]

(iv-50)
Its determinant is then
\[
\det \mathbf{T} = |\mathbf{T}| = \begin{vmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{vmatrix} = T_{11} \begin{vmatrix} T_{22} & T_{23} \\ T_{32} & T_{33} \end{vmatrix} - T_{12} \begin{vmatrix} T_{21} & T_{23} \\ T_{31} & T_{33} \end{vmatrix} + T_{13} \begin{vmatrix} T_{21} & T_{22} \\ T_{31} & T_{32} \end{vmatrix} = T_{11} (T_{22}T_{33} - T_{23}T_{32}) - T_{12} (T_{21}T_{33} - T_{23}T_{31}) + T_{13} (T_{21}T_{32} - T_{22}T_{31}). \tag{IV-51}
\]

iv) For this 3x3 matrix, the matrix of cofactors is given by
\[
\mathbf{C} = \begin{pmatrix} T_{22} & T_{23} & -T_{12} & T_{21} & T_{22} \\ T_{32} & T_{33} & T_{13} & T_{31} & T_{32} \\ T_{12} & T_{13} & T_{11} & T_{12} & T_{13} \\ T_{22} & T_{23} & T_{21} & T_{22} & T_{23} \end{pmatrix} \tag{IV-52}
\]

v) The transpose of this cofactor matrix is then (see Eq. IV-36)
\[
\tilde{\mathbf{C}} = \begin{pmatrix} T_{22} & T_{32} & -T_{12} & T_{12} & T_{22} \\ T_{23} & T_{33} & T_{13} & T_{13} & T_{23} \\ T_{21} & T_{31} & T_{11} & T_{11} & T_{21} \\ T_{23} & T_{33} & T_{13} & T_{13} & T_{23} \\ T_{21} & T_{31} & T_{11} & T_{11} & T_{21} \end{pmatrix} \tag{IV-53}
\]

vi) A matrix without an inverse is said to be singular.
vii) The inverse of a product (assuming it exists) is the product of the inverses in reverse order:

\[(ST)^{-1} = T^{-1}S^{-1}. \quad (IV-54)\]

p) A matrix is **unitary** if its inverse is equal to its Hermitian conjugate:

\[\text{UNITARY: } U^\dagger = U^{-1}. \quad (IV-55)\]

q) The **trace** of a matrix is the sum of the diagonal elements:

\[\text{Tr}(T) \equiv \sum_{i=1}^{m} T_{ii}, \quad (IV-56)\]

and has the property

\[\text{Tr}(T_1T_2) = \text{Tr}(T_2T_1). \quad (IV-57)\]

5. A vector under a linear transformation that obeys the following equation:

\[\hat{T}|\alpha\rangle = \lambda|\alpha\rangle, \quad (IV-58)\]

where \(\hat{T}|\alpha\rangle\) is called the **eigenvector** of the transformation, and the (complex) number \(\lambda\) is called the **eigenvalue**. Such an equation shows that a linear transformation creates a “scaled” duplicate (by a factor of \(\lambda\)) of the original vector \(|\alpha\rangle\).

a) Notice that any (nonzero) multiple of an eigenvector is still an eigenvector with the same eigenvalue.

b) In matrix form, the eigenvector equation takes the form:

\[Ta = \lambda a \quad (IV-59)\]

(for nonzero \(a\), or

\[(T - \lambda 1)a = 0. \quad (IV-60)\]

(here \(0\) is the **zero matrix**, whose elements are all zero.)

IV–11
c) If the matrix \((\mathbf{T} - \lambda \mathbf{1})\) had an *inverse*, we could multiply both sides of Eq. (IV-60) by \((\mathbf{T} - \lambda \mathbf{1})^{-1}\), and conclude that \(a = 0\). But by assumption, \(a\) is *not* zero, so the matrix \((\mathbf{T} - \lambda \mathbf{1})\) must in fact be singular, which means that its determinant vanishes:

\[
\det(\mathbf{T} - \lambda \mathbf{1}) = \begin{vmatrix}
(T_{11} - \lambda) & T_{12} & \cdots & T_{1n} \\
T_{21} & (T_{22} - \lambda) & \cdots & T_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
T_{n1} & T_{n2} & \cdots & (T_{nn} - \lambda)
\end{vmatrix} = 0.
\]

(IV-61)

d) Expansion of the determinant yields an algebraic equation for \(\lambda\):

\[
C_n \lambda^n + C_{n-1} \lambda^{n-1} + \cdots + C_1 \lambda + C_0 = 0,
\]

(IV-62)

where the coefficients \(C_i\) depend on the elements of \(\mathbf{T}\). This is called the *characteristic equation* for the matrix — its solutions determine the eigenvalues. Note that it is an \(n\)th-order equation, so it has \(n\) (complex) roots.

i) Some of these root may be duplicates, so all we can say for certain is that an \(n \times n\) matrix has *at least one* and *at most* \(n\) distinct eigenvalues.

ii) In the cases where duplicates exist, such states are said to be *degenerate*.

iii) To construct the corresponding eigenvectors, it is generally easiest simply to plug each \(\lambda\) back into Eq. (IV-59) and solve (by hand) for the components of \(\mathbf{a}\) (see Examples IV-3 and IV-4).
6. In many physical problems involving matrices in both classical mechanics and quantum mechanics it is desirable to carry out a (real) orthogonal similarity transformation or a unitary transformation to reduce the matrix to its diagonal form \(i.e., \) all non-diagonal elements equal to zero.

a) If eigenvectors span the space, we are free to use them as a basis

\[
\hat{T}|f_1\rangle = \lambda_1|f_1\rangle \\
\hat{T}|f_2\rangle = \lambda_2|f_2\rangle \\
\vdots \\
\hat{T}|f_n\rangle = \lambda_n|f_n\rangle
\]

b) The matrix representing \(\hat{T} \) takes on a very simple form in this basis, with the eigenvalues strung out along the main diagonal and all other elements zero:

\[
T = \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}.
\] (IV-63)

c) The (normalized) eigenvectors are equally simple:

\[
a^{(1)} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, a^{(2)} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \ldots, a^{(n)} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.
\] (IV-64)

d) A matrix that can be brought to \textbf{diagonal form} (Eq. IV-63) by change of basis is said to be \textbf{diagonalizable}.

e) In a geometrical sense, diagonalizing a matrix is equivalent to rotating the bases of a matrix about some point

IV–13
in the space until all of the off-diagonal elements go to zero. If \(\mathbf{D} \) is the diagonalized matrix of matrix \(\mathbf{M} \), the operation that diagonalizes \(\mathbf{M} \) is

\[
\mathbf{D} = \mathbf{S} \mathbf{M} \mathbf{S}^{-1},
\]

where matrix \(\mathbf{S} \) is called a similarity transformation. Note that the inverse of the similarity matrix can be constructed by using the eigenvectors (in the old basis) as the columns of \(\mathbf{S}^{-1} \):

\[
(S^{-1})_{ij} = (a^{(j)})_i.
\]

There is great advantage in bringing a matrix to diagonal form — it is much easier to work with. Unfortunately, not every matrix can be diagonalized — the eigenvectors have to span the space for a matrix to be diagonalizable.

7. The Hermitian conjugate of a linear transformation (called a **Hermitian transformation**) is that transformation \(\hat{T}^\dagger \) which, when applied to the *first* member of an inner product, gives the same result as if \(\hat{T} \) itself had been applied to the *second* vector:

\[
\langle \hat{T}^\dagger \alpha | \beta \rangle = \langle \alpha | \hat{T} | \beta \rangle
\]

(for all vectors \(|\alpha\rangle \) and \(|\beta\rangle \)).

a) Note that in the notation used in Eq. (IV-63), \(\langle \hat{T}^\dagger \alpha | \beta \rangle \) means the inner product of the vector \(\hat{T}^\dagger |\alpha\rangle \).

b) Note that we can also write

\[
\langle \alpha | \hat{T} | \beta \rangle = \mathbf{a}^\dagger \mathbf{T} \mathbf{b} = (\mathbf{T}^\dagger \mathbf{a})^\dagger \mathbf{b} = \langle \hat{T}^\dagger \alpha | \beta \rangle.
\]

c) In quantum mechanics, a fundamental role is played by Hermitian transformations (\(\hat{T}^\dagger = \hat{T} \)). The eigenvectors
and eigenvalues of a Hermitian transformation have 3 crucial properties (see Morrison §10.6 starting on page 464 for proofs to these theorems):

i) The eigenvalues of a Hermitian transformation are real.

ii) The eigenvectors of a Hermitian transformation belonging to distinct eigenvalues are orthogonal.

iii) The eigenvectors of a Hermitian transformation span the space.

Example IV–1. Prove the Schwartz inequality (Eq. IV-24). Hint: Define a new vector as a linear combination of α and β, then use Eqs. (IV-18), (IV-19), and (IV-20).

Solution:
Step (a):
Let’s define the vector $|\gamma\rangle = |\beta\rangle + f|\alpha\rangle$, hence $|\gamma\rangle$ is a linear combination of $|\alpha\rangle$ and $|\beta\rangle$. But what is the value of the scale factor f? Its value is arbitrary here. There are two ways we can determine a specific value. In both cases for convenience, let’s assume that $|\alpha\rangle$ and $|\beta\rangle$ are real vectors and f is a real function.

Method 1: (This method is based on the method shown in Arfken’s Mathematical Methods for Physicists on page 445.) Express Eq. (IV-19) in summation notation and take the minimum value of this equation:
$$\langle \gamma | \gamma \rangle = \sum \gamma_i^* \gamma_i = \sum \gamma_i^2 = 0.$$ Then,
$$\sum (\beta_i + f\alpha_i)^2 = \sum \alpha_i^2 \left(\frac{\beta_i}{\alpha_i} + f \right)^2 = 0.$$ If β_i/α_i is constant for all i, then $f = -\beta_i/\alpha_i$. But if β_i/α_i is not constant
(which we assume here for a more general expression), then we must expand the polynomial out in the summation above and solve for \(f \) using the quadratic formula:

\[
0 = \sum (\beta_i^2 + 2f \alpha_i \beta_i + f^2 \alpha_i^2)
= (\sum \beta_i^2 + 2f \sum \alpha_i \beta_i + f^2 \sum \alpha_i^2)
= c + bf + af^2
\]

where \(c = \sum \beta_i^2, b = 2 \sum \alpha_i \beta_i, \) and \(a = \sum \alpha_i^2 \). Then the quadratic equation gives

\[
f = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
= \frac{-2 \sum \alpha_i \beta_i \pm \sqrt{4 (\sum \alpha_i \beta_i)^2 - 4 \sum \alpha_i^2 \sum \beta_i^2}}{2 \sum \alpha_i^2}
= \frac{-2 \sum \alpha_i \beta_i \pm \sqrt{4 (\sum \alpha_i \beta_i)^2 - 4 (\sum \alpha_i \beta_i)^2}}{2 \sum \alpha_i^2}
= \frac{-2 \sum \alpha_i \beta_i \pm \sqrt{4 (\sum \alpha_i \beta_i)^2 - 4 (\sum \alpha_i \beta_i)^2}}{2 \sum \alpha_i^2}
= -\frac{2 \sum \alpha_i \beta_i}{2 \sum \alpha_i^2}
= -\frac{\sum \alpha_i \beta_i}{\sum \alpha_i^2}
= -\frac{\langle \alpha | \beta \rangle}{\langle \alpha | \alpha \rangle}.
\]

In the solution above, we can write \((\sum \alpha_i \sum \beta_i)^2\) as a single summation, \((\sum \alpha_i \beta_i)^2\), since we are summing over the same index.

Method 2: (This method is based upon the method described by Anderson’s *Modern Physics and Quantum Mechanics* on page 217.) In vector notation,

\[
0 \leq \langle \gamma | \gamma \rangle = \langle (\beta + f\alpha) | (\beta + f\alpha) \rangle
= \langle \beta | \beta \rangle + f \langle \beta | \alpha \rangle + f^* \langle \alpha | \beta \rangle + |f|^2 \langle \alpha | \alpha \rangle
= \langle \beta | \beta \rangle + f \langle \alpha | \beta \rangle + f \langle \alpha | \beta \rangle + f^2 \langle \alpha | \alpha \rangle
(\text{since } f, |\alpha\rangle, \& |\beta\rangle \text{ are real})
= \langle \beta | \beta \rangle + 2f \langle \alpha | \beta \rangle + f^2 \langle \alpha | \alpha \rangle.
\]

IV–16
Since \(f \) is arbitrary, we can determine any value for it. Let’s allow \(f \) to have a value when it is at a minimum, or set \((\partial/\partial f)\langle \gamma | \gamma \rangle = 0 \). Thus,

\[
0 = \frac{\partial}{\partial f} \left[\langle \beta | \beta \rangle + 2f\langle \alpha | \beta \rangle + f^2\langle \alpha | \alpha \rangle \right] = 0 + 2\langle \alpha | \beta \rangle + 2f\langle \alpha | \alpha \rangle
\]

\[
2f\langle \alpha | \alpha \rangle = -2\langle \alpha | \beta \rangle
\]

\[
f = -\frac{\langle \alpha | \beta \rangle}{\langle \alpha | \alpha \rangle},
\]

which is identical to the value found from the summation approach.

Step (b):

As such, we can now write

\[
|\gamma\rangle = |\beta\rangle - \left(\frac{\langle \alpha | \beta \rangle}{\langle \alpha | \alpha \rangle} \right) |\alpha\rangle.
\]

Even though we assumed \(f, \alpha \rangle, \) and \(\beta \rangle \) to be real in order to determine a functional form for \(f \), keep in mind that it’s functional form is arbitrary.

Step (c):

Continuing on now with the proof of the Schwartz inequality, we now will use the above functional form for \(|\gamma\rangle \) whether or not our vectors are real or complex (again \(f \) is just an arbitrary function).

With this form for \(|\gamma\rangle \), use Eq. (IV-20) to show

\[
\langle \gamma | \gamma \rangle = \langle \gamma \left(|\beta\rangle - \frac{\langle \alpha | \beta \rangle}{\langle \alpha | \alpha \rangle} |\alpha\rangle \right) = \langle \gamma | \beta \rangle - \frac{\langle \alpha | \beta \rangle}{\langle \alpha | \alpha \rangle} \langle \gamma | \alpha \rangle.
\]

Now from Eq. (IV-18):

\[
\langle \gamma | \beta \rangle^* = \langle \beta | \gamma \rangle = \langle \beta \left(|\beta\rangle - \frac{\langle \alpha | \beta \rangle}{\langle \alpha | \alpha \rangle} |\alpha\rangle \right) = \langle \beta | \beta \rangle - \frac{\langle \alpha | \beta \rangle}{\langle \alpha | \alpha \rangle} \langle \beta | \alpha \rangle
\]

\[
= \langle \beta | \beta \rangle - \frac{|\langle \alpha | \beta \rangle|^2}{\langle \alpha | \alpha \rangle},
\]

IV–17
which is always real, hence, $\langle \gamma | \beta \rangle = \langle \gamma | \beta \rangle^*$. Doing the same thing with the $|\alpha\rangle$ vector gives

$$
\langle \gamma|\alpha \rangle^* = \langle \alpha|\gamma \rangle = \langle \alpha \left(|\beta \rangle - \frac{\langle \alpha|\beta \rangle}{\langle \alpha|\alpha \rangle} |\alpha \rangle \right) = \langle \alpha|\beta \rangle - \frac{\langle \alpha|\beta \rangle}{\langle \alpha|\alpha \rangle} \langle \alpha|\alpha \rangle = |0\rangle,
$$

therefore,

$$
\langle \gamma|\alpha \rangle = |0\rangle.
$$

Finally, plugging this back in to our original equation for $\langle \gamma|\gamma \rangle$ gives

$$
\langle \gamma|\gamma \rangle = \langle \beta|\beta \rangle - \frac{|\langle \alpha|\beta \rangle|^2}{\langle \alpha|\alpha \rangle} - \frac{\langle \alpha|\beta \rangle}{\langle \alpha|\alpha \rangle} |0\rangle
= \langle \beta|\beta \rangle - \frac{|\langle \alpha|\beta \rangle|^2}{\langle \alpha|\alpha \rangle} \geq 0,
$$

and hence

$$
\langle \beta|\beta \rangle \geq \frac{|\langle \alpha|\beta \rangle|^2}{\langle \alpha|\alpha \rangle}
$$

$$
\frac{|\langle \alpha|\beta \rangle|^2}{\langle \alpha|\alpha \rangle} \leq \langle \beta|\beta \rangle
$$

$$
|\langle \alpha|\beta \rangle|^2 \leq \langle \alpha|\alpha \rangle \langle \beta|\beta \rangle. \quad \text{Q.E.D.}
$$

Note that the minimum value is achieved

$$
|\langle \alpha|\beta \rangle|^2 = \langle \alpha|\alpha \rangle \langle \beta|\beta \rangle,
$$

if $|\alpha\rangle$ is proportional (hence parallel) to $|\beta\rangle$:

$$
|\alpha\rangle = \lambda |\beta\rangle,
$$

where λ is some scalar.

Example IV–2. Given the following two matrices:

$$
A = \begin{pmatrix}
-1 & 1 & i \\
2 & 0 & 3 \\
2i & -2i & 2
\end{pmatrix}, \quad B = \begin{pmatrix}
2 & 0 & -i \\
0 & 1 & 0 \\
i & 3 & 2
\end{pmatrix},
$$

IV–18
compute (a) $A + B$, (b) AB, (c) $[A, B]$, (d) \tilde{A}, (e) A^*, (f) A^\dagger, (g) $\text{Tr}(B)$, (h) $\det(B)$, and (i) B^{-1}. Check that $BB^{-1} = 1$. Does A have an inverse?

Solution (a): Sum the respective elements of the matrix:

$$A + B = \begin{pmatrix} -1 & 1 & i \\ 2 & 0 & 3 \\ 2i & -2i & 2 \end{pmatrix} + \begin{pmatrix} 2 & 0 & -i \\ 0 & 1 & 0 \\ i & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 3 \\ 3i & (3 - 2i) & 4 \end{pmatrix}.$$

Solution (b): Multiply rows of A by columns of B:

$$AB = \begin{pmatrix} (-2 + 0 - 1) & (0 + 1 + 3i) & (i + 0 + 2i) \\ (4 + 0 + 3i) & (0 + 0 + 9) & (-2i + 0 + 6) \\ (4i + 0 + 2i) & (0 - 2i + 6) & (2 + 0 + 4) \end{pmatrix} = \begin{pmatrix} -3 & (1 + 3i) & 3i \\ (4 + 3i) & 9 & (6 - 2i) \\ 6i & (6 - 2i) & 6 \end{pmatrix}.$$

Solution (c): $[A, B] = AB - BA$, we already have AB,

$$BA = \begin{pmatrix} (-2 + 0 + 2) & (2 + 0 - 2) & (2i + 0 - 2i) \\ (0 + 2 + 0) & (0 + 0 + 0) & (0 + 3 + 0) \\ (-i + 6 + 4i) & (i + 0 - 4i) & (-1 + 9 + 4) \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 3 \\ (6 + 3i) & -3i & 12 \end{pmatrix};$$

$$[A, B] = \begin{pmatrix} -3 & (1 + 3i) & 3i \\ (4 + 3i) & 9 & (6 - 2i) \\ 6i & (6 - 2i) & 6 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 3 \\ (6 + 3i) & -3i & 12 \end{pmatrix} = \begin{pmatrix} -3 & (1 + 3i) & 3i \\ (2 + 3i) & 9 & (3 - 2i) \\ (-6 + 3i) & (6 + i) & -6 \end{pmatrix}.$$
Solution (d): Transpose of A — flip A about the diagonal:

$$\tilde{A} = \begin{pmatrix} -1 & 2 & 2i \\ 1 & 0 & -2i \\ i & 3 & 2 \end{pmatrix}.$$

Solution (e): Complex conjugate of A — multiply each i term by -1 in A:

$$A^* = \begin{pmatrix} -1 & 1 & -i \\ 2 & 0 & 3 \\ -2i & 2i & 2 \end{pmatrix}.$$

Solution (f): Hermitian of A:

$$A^\dagger \equiv \tilde{A}^* = \begin{pmatrix} -1 & 2 & -2i \\ 1 & 0 & 2i \\ -i & 3 & 2 \end{pmatrix}.$$

Solution (g): Trace of B:

$$\text{Tr}(B) = \sum_{i=1}^{3} B_{ii} = 2 + 1 + 2 = 5.$$

Solution (h): Determinant of B:

$$\det(B) = 2(2 - 0) - 0(0 - 0) - i(0 - i) = 4 - 0 - 1 = 3.$$

Solution (i): Inverse of B:

$$B^{-1} = \frac{1}{\det(B)} \tilde{C},$$
where
\[
C = \begin{pmatrix}
1 & 0 \\
3 & 2 \\
0 & -i \\
1 & 0
\end{pmatrix}
- \begin{pmatrix}
0 & 0 \\
i & 2 \\
i & 2 \\
0 & 0
\end{pmatrix}
- \begin{pmatrix}
0 & 1 \\
i & 3 \\
i & 3 \\
0 & 1
\end{pmatrix}
= \begin{pmatrix}
2 & 0 & -i \\
-3i & 3 & -6 \\
i & 0 & 2
\end{pmatrix},
\]
then
\[
\begin{pmatrix}
2 & -3i \\
0 & 3 \\
-6 & 2
\end{pmatrix}
\]

\[
B^{-1} = \frac{1}{3}
\begin{pmatrix}
2 & -3i & i \\
0 & 3 & 0 \\
-6 & 2 & 0
\end{pmatrix}
\]

\[
BB^{-1} = \frac{1}{3}
\begin{pmatrix}
(4 + 0 - 1) & (-6i + 0 + 6i) & (2i + 0 - 2i) \\
(0 + 0 + 0) & (0 + 3 + 0) & (0 + 0 + 0) \\
(2i + 0 - 2i) & (3 + 9 - 12) & (-1 + 0 + 4)
\end{pmatrix}
= \frac{1}{3}
\begin{pmatrix}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

If \(\det(A) \neq 0\), then \(A\) has an inverse:

\[
\det(A) = -1(0 + 6i) - 1(4 - 6i) + i(-4i - 0) = -6i - 4 + 6i + 4 = 0.
\]

As such, \(A\) does not have an inverse.

Example IV–3. Find the eigenvalues and normalized eigenvectors of the following matrix:

\[
M = \begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\]

Can this matrix be diagonalized?

Solution:

\[
0 = \det(M - \lambda 1) = \begin{vmatrix}
(1 - \lambda) & 1 \\
0 & (1 - \lambda)
\end{vmatrix}
= (1 - \lambda)^2
\]

IV–21
\[\lambda = 1 \] (only one eigenvalue).

From Eq. (IV-59) we get
\[
\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = 1 \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} .
\]

We get two equations from this eigenvector equation:
\[
\begin{align*}
a_1 + a_2 &= a_1 \\
a_2 &= a_2 .
\end{align*}
\]

The second equation tells us nothing, but the first equation shows us that \(a_2 = 0 \). We still need to figure out the value for \(a_1 \). We can do this by normalizing our eigenvector \(\mathbf{a} = \ket{\alpha} \):
\[
1 = \bra{\alpha} \ket{\alpha} = \sum_{i=1}^{2} |a_i|^2 \\
= |a_1|^2 + |a_2|^2 = |a_1|^2
\]
or \(a_1 = 1 \). Hence our normalized eigenvector,
\[
\ket{\alpha} = \mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} ,
\]
is
\[
\mathbf{a} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} .
\]

Since these eigenvectors do not span the space (as described on page IV-3, §A.2.c.ii.), this matrix cannot be diagonalized.

Example IV–4. Find the eigenvalues and eigenvectors of the following matrix:
\[
\mathbf{M} = \begin{pmatrix} 2 & 0 & -2 \\ -2i & i & 2i \\ 1 & 0 & -1 \end{pmatrix} .
\]

IV–22
Solution:

The characteristic equation is

\[|M - \lambda 1| = \begin{vmatrix} (2 - \lambda) & 0 & -2 \\ -2i & (i - \lambda) & 2i \\ 1 & 0 & (-1 - \lambda) \end{vmatrix} \]

\[= (2 - \lambda) \begin{vmatrix} (i - \lambda) & 2i \\ 0 & (-1 - \lambda) \end{vmatrix} - 0 - 2 \begin{vmatrix} -2i & (i - \lambda) \\ 1 & 0 \end{vmatrix} \]

\[= (2 - \lambda)[(i - \lambda)(-1 - \lambda) - 0] - 2[0 - (i - \lambda)] \]

\[= (2 - \lambda)(-i - i\lambda + \lambda + \lambda^2) + 2i - 2\lambda \]

\[= -2i - 2i\lambda + 2\lambda + 2\lambda^2 + i\lambda + i\lambda^2 - \lambda^2 - \lambda^3 + 2i - 2\lambda \]

\[= -\lambda^3 + (1 + i)\lambda^2 - i\lambda = 0. \]

To find the roots to this characteristic equation, factor out a \(\lambda \) and use the quadratic formula solution equation:

\[0 = -\lambda^3 + (1 + i)\lambda - i\lambda \]

\[\lambda_1 = 0 \]

\[\lambda_{2,3} = \frac{-1 + i \pm \sqrt{(1 + i)^2 - 4i}}{-2} \]

\[= \frac{-1 + i \pm \sqrt{(1 + 2i - 1) - 4i}}{-2} \]

\[= \frac{-1 + i \pm \sqrt{-2i}}{-2}. \]

However note that \((1 - i)^2 = -2i\). As such, the equation above becomes

\[\lambda_{2,3} = \frac{-1 + i \pm \sqrt{(1 - i)^2}}{-2} \]

\[= \frac{-1 + i \pm (1 - i)}{-2} \]

\[\lambda_2 = \frac{-1 + i - (1 - i)}{-2} = \frac{-2}{-2} = 1 \]

\[\lambda_3 = \frac{-1 + i + (1 - i)}{-2} = \frac{-2i}{-2} = i, \]

\[IV-23\]
so the roots of λ (i.e., the eigenvalues) are 0, 1, and i. Now, let’s call the components of the first eigenvector $|\alpha\rangle$ (a_1, a_2, a_3) which corresponds to eigenvalue $\lambda_1 = 0$. The eigenvector equation becomes

$$
\begin{pmatrix}
2 & 0 & -2 \\
-2i & i & 2i \\
1 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
a_1 \\
a_2 \\
a_3
\end{pmatrix}
= 0
\begin{pmatrix}
a_1 \\
a_2 \\
a_3
\end{pmatrix}
= \begin{pmatrix}0 \\ 0 \\ 0\end{pmatrix},
$$

which yield 3 equations:

\begin{align*}
2a_1 - 2a_3 &= 0 \\
-2ia_1 + ia_2 + 2ia_3 &= 0 \\
a_1 - a_3 &= 0.
\end{align*}

The first equation gives $a_3 = a_1$, the second gives $a_2 = 0$, and the third is redundant with the first equation. We can find the values for a_1 and a_3 by normalizing:

\begin{align*}
1 &= \langle \alpha | \alpha \rangle = \sum_{i=1}^{3} |a_i|^2 \\
&= |a_1|^2 + |a_2|^2 + |a_3|^2 = |a_1|^2 + |a_1|^2 \\
&= 2|a_1|^2,
\end{align*}

or $a_1 = a_3 = (1/\sqrt{2}) = \sqrt{2}/2$. Hence our eigenvector for λ_1 is

$$
|\alpha\rangle = \mathbf{a} = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \text{ for } \lambda_1 = 0.
$$

For the second eigenvector, let’s call it $|\beta\rangle = \mathbf{b}$, we have

$$
\begin{pmatrix}
2 & 0 & -2 \\
-2i & i & 2i \\
1 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
b_1 \\
b_2 \\
b_3
\end{pmatrix}
= 1
\begin{pmatrix}
b_1 \\
b_2 \\
b_3
\end{pmatrix}
= \begin{pmatrix}b_1 \\ b_2 \\ b_3\end{pmatrix},
$$

which yield the equations:

\begin{align*}
2b_1 - 2b_3 &= b_1 \\
-2ib_1 + ib_2 + 2ib_3 &= b_2 \\
b_1 - b_3 &= b_3,
\end{align*}

IV–24
with the solutions $b_3 = (1/2)b_1$ and $b_2 = [(1 - i)/2]b_1$. Normalizing gives

$$1 = \langle \beta | \beta \rangle = \sum_{i=1}^{3} |b_i|^2$$

$$= |b_1|^2 + |b_2|^2 + |b_3|^2$$

$$= |b_1|^2 + \left(\frac{1 + i}{2} \right) \left(\frac{1 - i}{2} \right) |b_1|^2 + \frac{1}{4} |b_1|^2$$

$$= |b_1|^2 + \left(\frac{1 + i - i + 1}{4} \right) |b_1|^2 + \frac{1}{4} |b_1|^2$$

$$= \frac{4}{4} |b_1|^2 + \frac{2}{4} |b_1|^2 + \frac{1}{4} |b_1|^2$$

$$= \frac{7}{4} |b_1|^2 ,$$

or $b_1 = (2/\sqrt{7})$. So $b_2 = [(1 - i)/\sqrt{7}]$ and $b_3 = (1/\sqrt{7})$ giving our final eigenvector for λ_2 as

$$|\beta\rangle = b = \frac{\sqrt{7}}{7} \begin{pmatrix} 2 \\ 1 - i \\ 1 \end{pmatrix} , \text{ for } \lambda_2 = 1 .$$

Finally, the third eigenvector (call it $|\gamma\rangle = c$) is

$$\begin{pmatrix} 2 & 0 & -2 \\ -2i & i & 2i \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = i \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} ic_1 \\ ic_2 \\ ic_3 \end{pmatrix} ,$$

which gives the equations:

$$2c_1 - 2c_3 = ic_1$$

$$-2ic_1 + ic_2 + 2ic_3 = ic_2$$

$$c_1 - c_3 = ic_3 ,$$

with the solutions $c_3 = c_1 = 0$, with c_2 undetermined. Once again, we can normalize our eigenvector to determine this undetermined c_2 coefficient:

$$1 = \langle \gamma | \gamma \rangle = \sum_{i=1}^{3} |c_i|^2$$

$$= |c_1|^2 + |c_2|^2 + |c_3|^2 = |c_2|^2 ,$$

IV–25
or $c_2 = 1$, which gives our third eigenvector:

$$ |\gamma\rangle = c = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \text{ for } \lambda_3 = i.$$

B. Function Spaces.

1. Functions as Vectors.

a) In quantum mechanics, we introduce the concept of a function space in which vectors are actually (complex) functions of x, inner products are integrals, and derivatives appear as linear transformations.

b) The inner product of two functions $[f(x) \text{ and } g(x)]$ is defined by the integral given in Eq. (IV-5):

$$ \langle f | g \rangle = \int f(x)^* g(x) \, dx , \quad \text{(IV-69)}$$

where the limits of this integral will depend on the domain of the functions in question.

i) This integral may not converge \implies if we want a function space with an inner product, we must restrict the class of functions so as to ensure that $\langle f | g \rangle$ is always well defined.

ii) It is clearly necessary that every admissible function be square integrable:

$$ \int |f(x)|^2 \, dx < \infty, \quad \text{(IV-70)}$$

otherwise the inner product of f with itself wouldn’t even exist.
iii) It turns out that this restriction is also sufficient — if \(f \) and \(g \) are both square integrable, then the integral in Eq. (IV-69) is necessarily finite.

Example IV–5. Let \(T(N) \) be the set of all trigonometric functions of the form

\[
f(x) = \sum_{n=0}^{N-1} \left[a_n \sin(n\pi x) + b_n \cos(n\pi x) \right], \quad (IV-71)
\]
on the interval \(-1 \leq x \leq 1\). Show that

\[
|e_n\rangle = \frac{1}{\sqrt{2}} e^{in\pi x}, \quad (n = 0, \pm1, \pm2, \ldots, \pm(N - 1)) \quad (IV-72)
\]

constitute an orthonormal basis for this function. What is the dimension of this space?

Solution:

Rewrite the trig functions using Euler’s relations,

\[
f(x) = \sum_{n=0}^{N-1} \left[\frac{a_n}{2i} \left(e^{in\pi x} - e^{-in\pi x} \right) + \frac{b_n}{2} \left(e^{in\pi x} + e^{-in\pi x} \right) \right]
\]

\[
= \sum_{n=0}^{N-1} \left[\frac{a_n}{2i} + \frac{b_n}{2} \right] e^{in\pi x} + \left(-\frac{a_n}{2i} + \frac{b_n}{2} \right) e^{-in\pi x}
\]

\[
= \sum_{n=-(N-1)}^{(N-1)} c_n e^{in\pi x},
\]

where

\[
\begin{align*}
c_n &= \frac{1}{2} (-ia_n + b_n), \quad \text{for } n = 1, 2, 3, \ldots, N - 1 \\
c_0 &= b_0 \\
c_n &= \frac{1}{2} (ia_{-n} + b_{-n}), \quad \text{for } n = -1, -2, -3, \ldots, -(N - 1)
\end{align*}
\]

(see §IV.A.c.ii on page IV-3). So the set does span the space. Is it orthonormal?

\[
\langle e_m | e_n \rangle = \frac{1}{2} \int_{-1}^{1} e^{-im\pi x} e^{in\pi x} \, dx
\]

\[
= \begin{cases}
\frac{1}{2} \left. \frac{e^{-i(m-n)\pi x}}{-i(m-n)\pi} \right|_{-1}^{1} = 0, & \text{for } m \neq n \\
\frac{1}{2} \left. f_{-1}^{1} \right| = 1, & \text{for } m = n
\end{cases}
\]

\[
= \delta_{mn}.
\]
Yes it is orthonormal. So it’s also a basis (i.e., no “extra” functions included), since orthogonal vectors are necessarily linearly independent.

Looking at the \(c_n \) coefficient equations above, the dimensions are

\[
D = (N - 1) + 1 + (N - 1) = 2(N - 1) + 1 = 2N - 1
\]

2. Operators as Linear Transformations.

a) In function spaces, operators (such as \(d/dx, d^2/dx^2 \), or simply \(x \)) behave as linear transformations, provided that they carry functions in the space into other functions in the space and satisfy the linearity condition (Eq. IV-26).

i) For example, in the polynomial space \(P(N) \), the derivative operator \(\hat{D} \equiv d/dx \) is a linear transformation, since it takes \(N \)th-order polynomials into \((N-1) \)th-order polynomials \(\implies \) hence still in the space.

ii) However, the operator \(\hat{x} \) (multiplication by \(x \)) is not, for it takes \((N-1) \)th-order polynomials into \(N \)th-order polynomials, which is no longer in the space.

b) In a function space, the eigenvectors of an operator \(\hat{T} \) are called eigenfunctions:

\[
\hat{T} f(x) = \lambda f(x).
\] (IV-73)

c) A Hermitian operator is one that satisfies the defining condition (Eq. IV-63):

\[
\langle f|\hat{T}|g \rangle = \langle \hat{T} f|g \rangle,
\] (IV-74)
for all functions $f(x)$ and $g(x)$ in the space.

d) When dealing with operators you must always keep in mind the function space you’re working in. An operator may not be a legitimate linear transformation because:

i) It carries functions out of the space.

ii) The eigenfunctions of an operator may not reside in the space.

iii) An operator that is Hermitian in one space may not be Hermitian in another.

e) One has to pay particular attention to transformations in infinite spaces:

i) Remember that \hat{x} is not a linear transformation in the space $P(N)$ since multiplication by x increases the order of the polynomial and hence takes functions outside the space.

ii) However, it is a linear transformation on $P(\infty)$, the space of all polynomials, on the interval $-1 \leq x \leq 1$.

iii) In fact, it’s a Hermitian transformation, since

$$\int_{-1}^{1} [f(x)]^* [xg(x)] \, dx = \int_{-1}^{1} [xf(x)]^* [g(x)] \, dx.$$

Example IV–6. Show that $e^{-x^2/2}$ is an eigenfunction of the operator $\hat{Q} = (d^2/dx^2) - x^2$, and find its eigenvalues.
Solution:

The eigenfunction equation is

\[\hat{Q} f(x) = \lambda f(x). \]

So carrying out this operation, we get

\[
\hat{Q} f(x) = \left(\frac{d^2}{dx^2} - x^2 \right) e^{-x^2/2} = \frac{d}{dx} \left(-xe^{-x^2/2} - x^2 e^{-x^2/2} \right) = -e^{-x^2/2} - x^2 e^{-x^2/2} = -e^{-x^2/2} - f(x).
\]

So it is an eigenfunction with only one eigenvalue of \(\lambda = -1 \).

3. **Hilbert Space.**

a) We will now start to talk about wave functions in 3-dimensional space. We have just been discussing the orthonormality of wave functions, now we define the **completeness** of a function.

i) We have shown that the generalized wave function is a linear combination of separable solutions (see Eq. III-21). In terms of the TISE, we can write this condition as

\[\psi = \sum_n a_n \psi_n(r). \quad (IV-75) \]

ii) The wave function components are orthonormal to each other if they satisfy the condition

\[\int_V \psi_m^*(r) \psi_n(r) \, dV = \delta_{mn}. \quad (IV-76) \]
iii) In addition, the wave function components ψ_n represent a complete system if it is impossible to find an additional function ϕ that is orthogonal to all of the ψ_n’s in the sense of Eq. (IV-76).

iv) If this is the case, the following completeness relation is valid:

$$\int_V \psi^* \psi \, dV = \int_V |\psi|^2 \, dV = \sum_n |a_n|^2, \quad (IV-77)$$

where the a_n’s are the expansion coefficients of the arbitrary wave function as defined in Eq. (IV-75).

b) If completeness holds, the ψ_n’s constitute an orthonormal basis of a Hilbert space.

i) A Hilbert space is a finite or infinite complete vector space on the basic field of complex numbers.

ii) In this space a scalar product is defined such that it assigns a complex number to each pair of functions $\psi(x)$ and $\phi(x)$ out of a set of linear functions.

iii) This scalar product meets three requirements:

1. $\langle \psi | \phi \rangle = \int \psi^* \phi \, dV = \left(\int \phi^* \psi \, dV \right)^* = (\langle \phi | \psi \rangle)^*$,
2. $\langle \psi | (a\phi_1 + b\phi_2) \rangle = a \langle \psi | \phi_1 \rangle + b \langle \psi | \phi_2 \rangle$ or,

$$\int \psi^* (a\phi_1 + b\phi_2) \, dV = a \int \psi^* \phi_1 \, dV + b \int \psi^* \phi_2 \, dV,$$
3. $\langle \psi | \psi \rangle = \int \psi^* \psi \, dV \geq 0$.

Note for the last requirement, $\langle \psi | \psi \rangle = 0$ only if $\psi = 0$.

c) The state vectors (i.e., wave functions) of a quantum mechanical system constitute a Hilbert space (hence, the Hilbert space is a function space).
d) Mathematicians refer to a complete inner product space as L_2. To physicists, L_2 is practically synonymous with Hilbert space.

4. We now recast the fundamental principles of quantum mechanics (as developed in §§II-III of the notes) in the more elegant language of linear algebra and function (i.e., Hilbert) space. Remember that the state of a particle is represented by its wave function, $\Psi(x, t)$, whose absolute square is the probability density for finding the particle at point x (or r in 3-D), at time t. It follows that Ψ must be normalized, which is possible if and only if it is square integrable.

C. The Generalized Statistical Interpretation.

1. The state of a particle is represented by a normalized vector ($|\Psi\rangle$) in the Hilbert space L_2.

 a) Classical dynamical quantities (such as position, velocity, momentum, and kinetic energy) can be expressed as functions of the “canonical” variables x (or r) and p (and sometimes t): $Q(x, p, t)$. To each such classical observables we associate a quantum-mechanical operator, \hat{Q}, obtained from Q by the substitution

 $$ p \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial x}. \quad (IV-78) $$

 b) The expectation value of Q, in the state Ψ, is

 $$ \langle Q \rangle = \int \Psi^*(x, t) \hat{Q} \Psi(x, t) \, dx, \quad (IV-79) $$

 which we now write as an inner product:

 $$ \langle Q \rangle = \langle \Psi | \hat{Q} | \Psi \rangle = \langle \Psi | \hat{Q} \Psi \rangle. \quad (IV-80) $$

 (Note that either notation, $\hat{Q} | \Psi$ or $\hat{Q} \Psi$, is considered acceptable.)
c) The expectation value of an observable quantity has got to be a real number, so

\[
\langle \Psi | \hat{Q} | \Psi \rangle = \langle \Psi | \hat{Q} | \Psi \rangle^* = \langle \hat{Q} \Psi | \Psi \rangle, \tag{IV-81}
\]

for all vectors |\Psi\rangle \Rightarrow \hat{Q} must be a Hermitian operator.

2. Observable quantities, \(Q(x, p, t) \), are represented by Hermitian operators, \(\hat{Q}(x, \frac{\hbar}{i \partial_x}, t) \); the expectation value of \(Q \), in the state |\Psi\rangle, is \(\langle \Psi | \hat{Q} | \Psi \rangle \).

3. A measurement of the observable \(Q \) on a particle in the state |\Psi\rangle is certain to return the value \(\lambda \) if and only if |\Psi\rangle is an eigenvector of \(\hat{Q} \), with eigenvalue \(\lambda \).

a) For example, the TISE (Eq. III-8) can be written in the form

\[
\hat{H} \psi = E \psi. \tag{IV-82}
\]

b) Note, however, that this is nothing more than an eigenvalue equation for the Hamiltonian operator and the solutions are states of determinate energy \(E \).

c) This third postulate can be rewritten in terms of a statistical argument \(\Rightarrow \) the generalized statistical interpretation (GSI) as given in the following postulate 4.

4. If you measure an observable \(Q \) on a particle in the state |\Psi\rangle, you are certain to get one of the eigenvalues of \(\hat{Q} \). The probability of getting the particular eigenvalue \(\lambda \) is equal to the absolute square of the \(\lambda \) component of |\Psi\rangle, when expressed in the orthonormal basis of eigenvectors.

a) To sustain this postulate, it is essential that the eigenfunctions of \(\hat{Q} \) span the space.
b) This might not be possible however for infinite-dimensional cases. As such, we shall take it as a restriction on the subset of Hermitian operators that are observable, that their eigenfunctions constitute a complete set (though they need not fall inside L_2).

c) There are two kinds of eigenvectors which we need to treat separately. The first deals with systems whose spectra are discrete (with the discrete eigenvalues separated by finite gaps — e.g., bound states in an atom).

i) We can label their eigenvectors with an integer n:

$$\hat{Q}|e_n⟩ = \lambda_n|e_n⟩, \quad \text{with } n = 1, 2, 3, \ldots \quad (IV-83)$$

ii) The eigenvectors are orthonormal (or rather, they can always be chosen so):

$$⟨e_m|e_n⟩ = δ_{mn}. \quad (IV-84)$$

iii) The completeness relation takes the form of a sum:

$$|Ψ⟩ = \sum_{n=1}^{∞} c_n|e_n⟩, \quad (IV-85)$$

with the components given by

$$c_n = ⟨e_n|Ψ⟩, \quad (IV-86)$$

and the probability of getting the particular eigenvalue λ_n is

$$|c_n|^2 = |⟨e_n|Ψ⟩|^2. \quad (IV-87)$$

d) The second deals with systems whose spectra are continuous (e.g., ionization states of an atom or scattering states).
i) The eigenvectors are labeled by a continuous variable k:

$$\hat{Q}|e_k\rangle = \lambda_k|e_k\rangle, \quad \text{with } -\infty < k < \infty.$$ \hfill (IV-88)

ii) Here, the eigenfunctions are not normalizable, but they satisfy a sort of "orthonormality" condition:

$$\langle e_\ell|e_k\rangle = \delta(\ell - k)$$ \hfill (IV-89)

(or rather, they can always be chosen so).

iii) The completeness relation takes the form of an integral:

$$|\Psi\rangle = \int_{-\infty}^{\infty} c_k|e_k\rangle \, dk,$$ \hfill (IV-90)

with the components given by

$$c_k = \langle e_k|\Psi\rangle,$$ \hfill (IV-91)

and the probability of getting an eigenvalue in the range dk about λ_k is

$$|c_k|^2 \, dk = |\langle e_k|\Psi\rangle|^2 \, dk.$$ \hfill (IV-92)

e) In the GSI, the "orthonormal" eigenfunctions of the position operator are

$$e_{x'}(x) = \delta(x - x'),$$ \hfill (IV-93)

and the eigenvalue (x') can take on any value between $-\infty$ and ∞.

i) The x' "component" of $|\Psi\rangle$ is

$$c_{x'} = \langle e_{x'}|\Psi\rangle = \int_{-\infty}^{\infty} \delta(x - x')\Psi(x,t) \, dx = \Psi(x',t).$$ \hfill (IV-94)
Thus, the probability of finding the particle in the range \(dx' \) about \(x' \) is

\[
|c_{x'}|^2 \, dx' = |\Psi(x',t)|^2 \, dx', \tag{IV-95}
\]

which is the original statistical interpretation of \(\Psi \).

The momentum operator in the GSI is handled in the following manner:

i) Its “orthonormal” eigenfunctions are

\[
e_p(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}, \tag{IV-96}
\]

and the eigenvalue \((p) \) can take on any value in the range \(-\infty < p < \infty\).

ii) The \(p \) “component” of \(|\Psi\rangle \) is

\[
c_p = \langle e_p | \Psi \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \Psi(x,t) \, dx \equiv \Phi(p,t). \tag{IV-97}
\]

iii) Here, \(\Phi(p,t) \) is called the momentum-space wave function — it is (apart from the factors of \(\hbar \)) the Fourier transform of the position-space wave function \(\Psi(x,t) \).

iv) The probability of getting the momentum in the range \(dp \) and \(p \) is

\[
P \, dp = |\Phi(p,t)|^2 \, dp . \tag{IV-98}
\]
Example IV–7. Problems concerning the generalized statistical interpretation of quantum mechanics:

(a) Show that \(\sum |c_n|^2 = 1 \) in Equation (IV-85).

(b) Show that \(\int |c_k|^2 \, dk = 1 \) in Equation (IV-90).

(c) From postulate 4 (i.e., the generalized statistical interpretation) it follows that

\[
\langle Q \rangle = \sum \lambda_n |c_n|^2, \quad \text{or} \quad \langle Q \rangle = \int \lambda_k |c_k|^2 \, dk,
\]

for discrete and continuous spectra, respectively. Show that this is consistent with postulate 2: \(\langle Q \rangle = \langle \Psi | \hat{Q} | \Psi \rangle \).

Solution (a):

\[
\begin{align*}
1 &= \langle \Psi | \Psi \rangle \\
&= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_m^* c_n \langle e_m | e_n \rangle \\
&= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_m^* c_n \delta_{mn} \\
&= \sum_{n=1}^{\infty} |c_n|^2 \quad \text{Q.E.D.}
\end{align*}
\]

Solution (b):

\[
\begin{align*}
1 &= \langle \Psi | \Psi \rangle \\
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c_\ell^* c_k \langle e_\ell | e_k \rangle \, d\ell \, dk \\
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c_\ell^* c_k \delta(\ell - k) \, d\ell \, dk \\
&= \int_{-\infty}^{\infty} |c_k|^2 \, dk \quad \text{Q.E.D.}
\end{align*}
\]

Solution (c): From Eq. (IV-85) and postulate 2:

\[
\begin{align*}
\langle Q \rangle &= \langle \Psi | \hat{Q} | \Psi \rangle \\
&= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_m^* c_n \langle e_m | \hat{Q} | e_n \rangle \\
&= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_m^* c_n \lambda_n \langle e_m | e_n \rangle \\
&= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_m^* c_n \lambda_n \delta_{mn} \\
&= \sum_{n=1}^{\infty} \lambda_n |c_n|^2
\end{align*}
\]
From Eq. (IV-90) and postulate 2:

\[
\langle Q \rangle = \langle \Psi | \hat{Q} | \Psi \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c_\ell^* c_k \langle e_\ell | \hat{Q} | e_k \rangle \, d\ell \, dk
\]

\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c_\ell^* c_k \lambda_k \langle e_\ell | e_k \rangle \, d\ell \, dk
\]

\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c_\ell^* c_k \lambda_k \delta(\ell - k) \, d\ell \, dk
\]

\[
= \int_{-\infty}^{\infty} \lambda_k |c_k|^2 \, dk
\]

Example IV–8. Confirm that \(e_p(x) \) (in Eq. IV-96) is the “orthonormal" eigenfunction of the momentum operator, with eigenvalue \(p \).

Solution:

The momentum operator is \(\hat{p} = (\hbar/i) d/dx \). Applying this operator on Eq. (IV-96) gives

\[
\hat{p} e_p = \frac{\hbar}{i} \frac{d}{dx} e_p = \frac{\hbar}{i} \frac{1}{\sqrt{2\pi\hbar}} \frac{ip}{\hbar} e^{ipx/\hbar} = pe_p .
\]

Hence \(e_p \) is an eigenfunction of the momentum operator with an eigenvalue of \(p \).

To prove that it is orthonormal, we need to take the inner product of this eigenfunction:

\[
\langle e_p | e_q \rangle = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} e^{-ipx/\hbar} e^{iqx/\hbar} \, dx
\]

\[
= \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} e^{i(q-p)y} \hbar \, dy \quad \text{(with } y \equiv x/\hbar)\]

\[
= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(q-p)y} \, dy .
\]

With the use of Plancherel’s theorem (see Eq. III-142), let \(f(x) = \delta(x) \) in Eq. (III-142), so the Fourier transform of the delta-function is

\[
F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \delta(x) e^{-ikx} \, dx = \frac{1}{\sqrt{2\pi}} \frac{1}{e^{-i0}} = \frac{1}{\sqrt{2\pi}}
\]

and the inverse Fourier transform of \(F(k) = 1/\sqrt{2\pi} \) is

\[
f(k) = \delta(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{ikx} \, dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} \, dx .
\]

IV-38
Comparing this equation with the equation derived for $\langle e_p | e_q \rangle$, we see that they are the same if $q - p = x$ and $y = k$. Making these variable substitutions in our equation above, we see that

$$\langle e_p | e_q \rangle = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(y(q-p))} dy = \delta(q - p).$$

As such, $|e_p\rangle$ and $|e_q\rangle$ are “orthonormal,” (hence are basis functions) in the sense of Eq. (IV-93).
D. The Uncertainty Principle.

 a) For any observable A, we can express the variance in the measurement of A as
 \[\sigma_A^2 = \langle (\hat{A} - \langle A \rangle) \Psi | (\hat{A} - \langle A \rangle) \Psi \rangle = \langle f | f \rangle, \]
 where $|f\rangle \equiv (\hat{A} - \langle A \rangle) \Psi$.
 b) Likewise, for any other observable B, we have
 \[\sigma_B^2 = \langle g | g \rangle, \]
 where $|g\rangle \equiv (\hat{B} - \langle B \rangle) \Psi$.
 c) Invoking the Schwartz inequality (Eq. IV-24), we get
 \[\sigma_A^2 \sigma_B^2 = \langle f | f \rangle \langle g | g \rangle \geq |\langle f | g \rangle|^2. \]
 i) From the mathematics of complex variables, for any complex number:
 \[|z|^2 = (\text{Re}(z))^2 + (\text{Im}(z))^2 \geq (\text{Im}(z))^2 = \left[\frac{1}{2i} (z - z^*) \right]^2, \]
 where z^* is the complex conjugate of z.
 ii) Therefore, letting $z = \langle f | g \rangle$,
 \[\sigma_A^2 \sigma_B^2 \geq \left(\frac{1}{2i} [\langle f | g \rangle - \langle g | f \rangle] \right)^2. \]
 iii) But
 \[\langle f | g \rangle = \langle (\hat{A} - \langle A \rangle) \Psi | (\hat{B} - \langle B \rangle) \Psi \rangle \]
 \[= \langle \Psi | (\hat{A} - \langle A \rangle) (\hat{B} - \langle B \rangle) \Psi \rangle \]
 \[= \langle \Psi | (\hat{A} \hat{B} - \hat{A} \langle B \rangle - \hat{B} \langle A \rangle + \langle A \rangle \langle B \rangle) \Psi \rangle \]
\[
\langle \Psi | \hat{A} \hat{B} \Psi \rangle - \langle B \rangle \langle \Psi | \hat{A} \Psi \rangle - \langle A \rangle \langle \Psi | \hat{B} \Psi \rangle + \\
\langle A \rangle \langle B \rangle \langle \Psi | \Psi \rangle
\]
\[
= \langle \hat{A} \hat{B} \rangle - \langle B \rangle \langle A \rangle - \langle A \rangle \langle B \rangle + \langle A \rangle \langle B \rangle
\]
\[
= \langle \hat{A} \hat{B} \rangle - \langle B \rangle \langle A \rangle = \langle \hat{A} \hat{B} \rangle - \langle A \rangle \langle B \rangle.
\]

iv) Similarly,
\[
\langle g | f \rangle = \langle \hat{B} \hat{A} \rangle - \langle A \rangle \langle B \rangle,
\]
so
\[
\langle f | g \rangle - \langle g | f \rangle = \langle \hat{A} \hat{B} \rangle - \langle \hat{B} \hat{A} \rangle = \langle \hat{A}, \hat{B} \rangle,
\]
where
\[
\langle \hat{A}, \hat{B} \rangle \equiv \langle \hat{A} \hat{B} \rangle - \langle \hat{B} \hat{A} \rangle \quad \text{(IV-103)}
\]
is the commutator of the two operators.

\[\text{d)}\]

As a result, Eq. (IV-102) becomes
\[
\sigma_A^2 \sigma_B^2 \geq \left(\frac{1}{2i} \langle [\hat{A}, \hat{B}] \rangle \right)^2.
\]
This is the uncertainty principle in its most general form.

i) You may be asking, isn’t the right-hand side of the equation negative? The answer is no since the commutator carries its own factor of i and the two cancel out.

ii) For example, suppose the first observable is position ($\hat{A} = x$) and the second is momentum ($\hat{B} = (\hbar/i)d/dx$). To determine the commutator, we use an arbitrary “test” function $f(x)$:
\[
[\hat{x}, \hat{p}] f = \frac{\hbar}{i} \frac{d}{dx} f - \frac{\hbar}{i} \frac{d}{dx} (xf)
\]
\[
= \frac{\hbar}{i} \left[x \frac{df}{dx} - (f + x \frac{df}{dx}) \right] = i\hbar f,
\]
IV–41
so

$$[\hat{x}, \hat{p}] = i\hbar.$$ \hspace{1cm} (IV-105)

Accordingly,

$$\sigma_x^2 \sigma_p^2 \geq \left(\frac{1}{2i} i\hbar \right)^2 = \left(\frac{\hbar}{2} \right)^2,$$

or, since standard deviations are by their nature positive,

$$\sigma_x \sigma_p \geq \frac{\hbar}{2}. \hspace{1cm} (IV-106)$$

e) That proves that the original Heisenberg uncertainty principle, but we now see that it is just one application of a far more general theorem:

i) There will be an “uncertainty principle” for any pair of observables whose corresponding operators do not commute.

ii) We call these incompatible observables.

iii) Incompatible observables do not have shared eigenvectors — at least, they cannot have a complete set of common eigenvectors. Matrices representing incompatible observables cannot be simultaneously diagonalized (that is, they cannot both be brought to diagonal form by the same similarity transformation.)

iv) On the other hand, compatible observables (whose operators do commute) share a complete set of eigenvectors, and the corresponding matrices can be simultaneously diagonalized.

IV–42
Example IV–9. Prove the famous “Luttermoser uncertainty principle,” relating the uncertainty in position \((A = x)\) to the uncertainty in energy \((B = p^2/2m + V = H)\):
\[
\sigma_x \sigma_H \geq \frac{\hbar}{2m} |\langle p \rangle|.
\]
For stationary states this does not tell you much — why not?

Solution:
\[
\left[x, \frac{p^2}{2m} + V \right] = \frac{1}{2m} [x, p^2] + [x, V].
\]
Then from Eq. (IV-42),
\[
[x, p^2] = xp^2 - p^2 x = xp^2 - pxp + pxp - p^2 x = [x, p]p + p[x, p].
\]
By making use of Eq. (IV-105), we get
\[
[x, p^2] = (i\hbar)p + p(i\hbar) = 2i\hbar p, \quad \text{and}
\]
\[
[x, V] = xV - Vx = xV - xV = 0.
\]
So,
\[
\left[x, \frac{p^2}{2m} + V \right] = \frac{1}{2m} 2i\hbar p = i\hbar p/m.
\]
Now from Eq. (IV-104),
\[
\sigma_x^2 \sigma_H^2 \geq \left(\frac{1}{2i} \langle [\hat{x}, \hat{H}] \rangle \right)^2
= \left(\frac{1}{2i} \left\langle x, \frac{p^2}{2m} + V \right\rangle \right)^2
\geq \left(\frac{1}{2i} \frac{i\hbar}{m} \langle p \rangle \right)^2
= \left(\frac{\hbar}{2m} \langle p \rangle \right)^2,
\]
or
\[
\sigma_x \sigma_H \geq \frac{\hbar}{2m} |\langle p \rangle|. \quad \text{Q.E.D.}
\]
For stationary states, \(\sigma_H = 0\) and \(\langle p \rangle = 0\), so the “Luttermoser uncertainty relation” just says \(0 \geq 0\) for stationary states \(\implies\) hence tells us nothing.
2. **The Energy-Time Uncertainty Principle.**

a) Compute the time derivative of the expectation value of some observable \(Q(x, p, t) \):

\[
\frac{d}{dt} \langle Q \rangle = \frac{d}{dt} \langle \Psi | \hat{Q} | \Psi \rangle = \langle \frac{\partial \Psi}{\partial t} | \hat{Q} | \Psi \rangle + \langle \Psi | \frac{\partial \hat{Q}}{\partial t} | \Psi \rangle + \langle \Psi | \hat{Q} | \frac{\partial \Psi}{\partial t} \rangle.
\]

b) Now the Schrödinger equation says

\[
i\hbar \frac{\partial \Psi}{\partial t} = \hat{H} \Psi,
\]

where \(H = p^2/2m + V \) is the Hamiltonian, so substituting \((1/i\hbar)\hat{H}\Psi\) for the time derivatives of the wave function in the equation above, our terms become

\[
\langle \frac{\partial \Psi}{\partial t} | \hat{Q} | \Psi \rangle = \frac{1}{i\hbar} \hat{H} \Psi | \hat{Q} | \Psi \rangle = \frac{1}{i\hbar} \langle \hat{H} \Psi | \hat{Q} | \Psi \rangle
\]

\[
\langle \Psi | \frac{\partial \hat{Q}}{\partial t} | \Psi \rangle = \langle \frac{\partial \hat{Q}}{\partial t} \rangle
\]

\[
\langle \Psi | \hat{Q} | \frac{\partial \Psi}{\partial t} \rangle = \langle \Psi | \hat{Q} | \frac{1}{i\hbar} \hat{H} \Psi \rangle = \frac{1}{i\hbar} \langle \Psi | \hat{Q} \hat{H} | \Psi \rangle = \frac{1}{i\hbar} \langle \Psi | \hat{Q} \hat{H} | \Psi \rangle,
\]

so

\[
\frac{d}{dt} \langle Q \rangle = -\frac{1}{i\hbar} \langle \hat{H} \Psi | \hat{Q} \Psi \rangle + \frac{1}{i\hbar} \langle \Psi | \hat{Q} \hat{H} | \Psi \rangle + \langle \frac{\partial \hat{Q}}{\partial t} \rangle.
\]

c) But \(\hat{H} \) is Hermitian, so \(\langle \hat{H} \Psi | \hat{Q} | \Psi \rangle = \langle \Psi | \hat{Q} \hat{H} | \Psi \rangle \), thus

\[
\frac{d}{dt} \langle Q \rangle = -\frac{1}{i\hbar} \langle \Psi | \hat{H} \hat{Q} | \Psi \rangle + \frac{1}{i\hbar} \langle \Psi | \hat{Q} \hat{H} | \Psi \rangle + \langle \frac{\partial \hat{Q}}{\partial t} \rangle
\]

\[
= \frac{i}{\hbar} \langle \Psi | \hat{H} \hat{Q} | \Psi \rangle - \frac{i}{\hbar} \langle \Psi | \hat{Q} \hat{H} | \Psi \rangle + \langle \frac{\partial \hat{Q}}{\partial t} \rangle
\]

\[
= \frac{i}{\hbar} \langle \Psi | [\hat{H}, \hat{Q}] | \Psi \rangle + \langle \frac{\partial \hat{Q}}{\partial t} \rangle
\]

or

\[
\frac{d}{dt} \langle Q \rangle = \frac{i}{\hbar} \langle [\hat{H}, \hat{Q}] \rangle + \langle \frac{\partial \hat{Q}}{\partial t} \rangle. \tag{IV-107}
\]

IV–44
i) If the operator \hat{Q} does not depend explicitly upon t, the rate of change of the expectation value of the observable Q is determined by the commutator of the operator with the Hamiltonian.

ii) If \hat{Q} commutes with \hat{H}, then $\langle Q \rangle$ is constant in time, and in this sense, Q is a conserved quantity.

d) Let us chose $A = H$ and $B = Q$ in the generalized uncertainty principle of Eq. (IV-104) and assume that Q does not depend explicitly on t, then

$$\sigma_H^2 \sigma_Q^2 \geq \left(\frac{1}{2i} \langle [\hat{H}, \hat{Q}] \rangle \right)^2 = \left(\frac{1}{2i} \frac{\hbar}{i} \frac{d\langle Q \rangle}{dt} \right)^2 = \left(\frac{\hbar}{2} \right)^2 \left(\frac{d\langle Q \rangle}{dt} \right)^2.$$

e) Taking the square root of both sides gives

$$\sigma_H \sigma_Q \geq \frac{\hbar}{2} \left| \frac{d\langle Q \rangle}{dt} \right|.$$

(iV-108)

i) Let's define $\Delta E \equiv \sigma_H$ (with Δ as the usual sloppy notation for standard deviation), and

$$\Delta t \equiv \frac{\sigma_Q}{|d\langle Q \rangle/dt|}.$$

(iV-109)

ii) Then

$$\Delta E \Delta t \geq \frac{\hbar}{2},$$

(iV-110)

which is the energy-time uncertainty relation we wrote down in Eq. (I-5) using the special theory of relativity.

iii) Note that the definition of Δt here is the amount of time it takes the expectation value of Q to change by one standard deviation.
f) In particular, Δt depends entirely on what observable (Q) you care to look at — the change might be rapid for one observable and slow for another.

g) But if ΔE is small, then the rate of change of all observables must be very gradual, and conversely, if any observable changes rapidly, the “uncertainty” in the energy must be large.

h) In atomic physics, an electron will stay in the ground state forever $\Delta t \to \infty$ unless a passing photon interacts with it. As such, $\Delta E = 0$ for the ground state \implies the ground state is infinitely “sharp.” Meanwhile, an electron will stay excited for a short time ($\Delta t = 10^{-8}$ s for a resonance transition). As such, such an excited state will have a “natural width” of at least $\Delta E = (\hbar/2)/\Delta t = 5.273 \times 10^{-27}$ J = 3.29×10^{-8} eV.