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CSCI 4717/5717 
Computer Architecture

Topic: CPU Operations and Pipelining

Reading: Stallings, Sections 12.3 and 12.4
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Instruction Cycle

• Over the past few weeks, we have visited the steps the 
processor uses to execute an instruction

• A single instruction may requires many steps:
– Determine address of instruction
– Fetch instruction
– Decode instruction
– Determine address(es) of source operands
– Fetch operand(s)
– Execute instruction
– Determine address(es) where result(s) are to be stored
– Store result(s)
– Check for interrupts
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Instruction Cycle (continued)
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Indirect Cycle

• Some instructions requires operands, each 
of which requires a memory access

• With indirect addressing, an additional 
memory access is required to determine 
final operand address

• Indirect addressing may be required of more 
than one operand, e.g., a source and a 
destination

• Each time indirect addressing is used, an 
additional operand fetch cycle is required.
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Data Flow
• The better we can break up the execution of an 

instruction into its sub-cycles, the better we will be 
able to optimize the processor’s performance

• This partitioning of the instruction’s operation 
depends on the CPU design

• In general, there is a sequence of events that can 
be described that make up the execution of an 
instruction
– Fetch cycle
– Data fetch cycle
– Indirect cycle
– Execute cycle
– Interrupt cycle
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Instruction Fetch

• PC contains address of next instruction
• Address moved to Memory Address 

Register (MAR)
• Address placed on address bus
• Control unit requests memory read
• Result placed on data bus, copied to 

Memory Buffer Register (MBR), then to IR
• Meanwhile PC incremented by size of 

machine code (typically one address)
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Instruction Fetch (continued)
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Data Fetch

• Operand address is fetched into MBR
• IR is examined to determine if indirect addressing 

is needed. If so, indirect cycle is performed
– Address of location from which to fetch operand 

address is calculated based on first fetch
– Control unit requests memory read
– Result (actual address of operand) moved to MBR

• Address in MBR moved to MAR
• Address placed on address bus
• Control unit requests memory read
• Result placed on data bus, copied to MBR
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Execute Cycle

• Due to wide range of instruction complexity, 
execute cycle may take one of many forms.
– register-to-register transfer
– memory or I/O read
– ALU operation

• Duration is also widely varied
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Interrupt Cycle

• At the end of the execution of an instruction, 
interrupts are checked

• Unlike execute cycle, this cycle is simple and 
predictable

• Process
– Current PC saved to allow resumption after interrupt
– Contents of PC copied to MBR
– Special memory location (e.g. stack pointer) loaded to 

MAR
– MBR written to memory
– PC loaded with address of interrupt handling routine
– Next instruction (first of interrupt handler) can be 

fetched
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Interrupt Cycle (continued)
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Pipelining

As with manufacturing, the concept of 
pipelining regarding the operation of a CPU 
is to: 
– break the process into smaller steps, each step 

handled by a sub process
– as soon as one sub process finishes its task, it 

passes its result to the next sub process, then 
attempts to begin the next task

– multiple tasks being operated on simultaneously 
improves performance
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Breaking an Instruction into Cycles

• A simple approach is to divide instruction 
into two stages:
– Fetch instruction
– Execute instruction

• There are times when execution of 
instruction doesn’t use main memory

• In these cases, use idle bus to fetch next 
instruction in parallel with execution.

• This is called instruction prefetch
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Instruction Prefetch
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Improved Performance of Prefetch

fetch exec fetch exec fetch exec fetch exec

fetch exec
fetch exec

fetch exec
fetch exec

Instruction 1 Instruction 2 Instruction 3 Instruction 4

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Without prefetch:

With prefetch:
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Improved Performance of Prefetch (continued)

• Examining operation of prefetch appears to 
take half as many cycles as the number of 
instructions increases

• Performance, however, is not doubled:
– Fetch usually shorter than execution
– Prefetch more than one instruction?
– Any jump or branch means that prefetched

instructions are not the required instructions
Add more stages to improve performance
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Three Cycle Instruction
The number of cycles it takes to execute a single 
instruction is further reduced (to approximately a 
third) if we break an instruction into three cycles 
(fetch/decode/execute).

Instruction 1

Instruction 2

Instruction 3

Instruction 4

F D E

Instruction 1

F D E

Instruction 2

F D E

Instruction 3

F D E

Instruction 4

F D E

F D E

F D E

F D E
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Pipelining Strategy
• If instruction execution could be broken into more 

pieces, we could realize even better performance
– Fetch instruction (FI) – Read next instruction into buffer
– Decode instruction (DI) – Determine the opcode
– Calculate operands (CO) – Find effective address of 

source operands
– Fetch operands (FO) – Get source operands from 

memory
– Execute instructions (EI) – Perform indicated operation
– Write operands (WO) – Store the result

• This decomposition produces nearly equal 
durations
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Sample Timing Diagram for Pipeline
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Problems with Previous Figure
(Important Slide!)

• Assumes that each instruction goes through all six 
stages of pipeline

• It is possible to have FI, FO, and WO happening at 
the same time

• Even with the more detailed decomposition, some 
stages will still take more time

• Conditional branches cause even greater 
disruption to pipeline than with prefetch

• Interrupts, like conditional branches, will disrupt 
pipeline

• CO and FO stages may depend on results of 
previous instruction at a point before the WO 
stage writes the results
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Effects of a Branch in a Pipeline
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Flow of a 
Six Stage 
Pipeline
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Alternative 
Pipeline 
Depiction
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More Roadblocks to Realizing Full Speedup

• There are two additional factors that 
frustrate improving performance using 
pipelining
– Overhead required between stages such as 

buffer-to-buffer transfers
– The amount of control logic required to handle 

memory and register dependencies and to 
control the pipeline itself

• With each added stage, the hardware 
needed to support pipelining requires careful 
consideration and design
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Pipeline Performance Equations

Here are some simple measures of pipeline 
performance and relative speed up:

τ = time for one stage
τm = maximum stage delay
d = delay of latches between stages
k = number of stages

τ = max[τi] + d = τm + d 1 < i < k
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Pipeline Performance Equations  (continued)

• In general, d is equivalent to a clock pulse and 
τm >> d.

• For n instructions with no branches, the total time 
required to execute all n instructions through a 
k-stage pipeline, Tk, is:

Tk = [k + (n – 1)]τ

• It takes k cycles to fill the pipeline, then once cycle 
each for the remaining n-1 instructions.
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Speedup Factor

• For a k-stage pipeline, the ideal speedup calculated with 
respect to execution without a pipeline is:

Sk = T1 / Tk

= n·k·τ / [k + (n – 1)]τ
= n·k / [k + (n – 1)]

• As n ∞, the speed up goes to k
• The potential gains of a pipeline are offset by increased 

cost, delay between stages, and consequences of a 
branch.
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Dealing with Branches

A variety of approaches have been used to 
reduce the consequences of branches 
encountered in a pipelined system:
– Multiple Streams
– Prefetch Branch Target
– Loop buffer
– Branch prediction
– Delayed branching
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Multiple Streams

• Branch penalty is a result of having two possible 
paths of execution

• Solution: Have two pipelines
• Prefetch each branch into a separate pipeline
• Once outcome of conditional branch is 

determined, use appropriate pipeline
• Competing for resources – this method leads to 

bus & register contention
• More streams than pipes – multiple branches lead 

to further pipelines being needed
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Prefetch Branch Target

• Target of branch is prefetched in addition to 
instructions following branch

• Keep target until branch is executed
• Used by IBM 360/91
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Loop Buffer

• Add a small, very fast memory
• Maintained by fetch stage of pipeline
• Use it to contain the n most recently fetched 

instructions in sequence.
• Before taking a branch, see if branch target is in 

buffer
• Similar in concept to a cache dedicated to 

instructions while maintaining an order of 
execution

• Used by CRAY-1
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Loop Buffer Benefits

• Particularly effective with loops if the buffer is large 
enough to contain all of the instructions in a loop.  
Instructions only need to be fetched once.

• If executing from within the buffer, buffer acts like 
a prefetch by having all of the instructions already 
loaded into high-speed memory without having to 
access main memory or cache.
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Loop Buffer Diagram
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Branch Prediction

• There are a number of methods that processors 
employ to make an educated guess as to the 
direction a branch may take.

• Static
– Predict never taken
– Predict always taken
– Predict by opcode

• Dynamic – depend on execution history
– Taken/not taken switch
– Branch history table
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Static Branch Strategies

• Predict Never Taken
– Assume that jump will not happen
– Always fetch next instruction 
– 68020 & VAX 11/780
– VAX will not prefetch after branch if a page fault would 

result (This is a conflict between the operating system 
and the CPU design)

• Predict always taken
– Assume that jump will happen
– Always fetch target instruction

• Predict by Opcode
– Some instructions are more likely to result in a jump 

than others
– Can get up to 75% success
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Dynamic Branch Strategies

• Attempt to improve accuracy by basing prediction 
on history

• Dedicate on or more bits with each branch 
instruction to reflect recent history of instruction

• Not stored in memory, rather in high-speed 
storage
– one possibility is in cache with instructions (history is 

lost when instruction is replaced)
– another is to keep a small with recently executed branch 

instructions
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Taken/Not taken switch

• Storing one bit for history:
– 0: last branch not taken
– 1: last branch taken
– Shortcoming is with loops where first branch is always 

predicted wrong since last time through loop, CPU didn’t 
branch

• Storing two bits for history:
– 00: branch not taken, followed by branch taken
– 01: branch taken, followed by branch not taken
– 10: two branch taken in a row
– 11: two branch not taken in a row
– Can be optimized for loops
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Branch Prediction State Diagram

• Must get two disagreements in a row before switching 
prediction
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Branch History Table
• There are three things that should be kept in the 

branchy history table
• Address of the branch instruction
• Bits indicating branch history
• Branch target information, i.e., where are we going
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Delayed Branch

• Possible to improve pipeline performance by 
rearranging instructions

• Start making calculations for branch earlier so that 
pipeline can filled with real processing while 
branch is being assessed

• Chapter 13 will examine this in greater detail


