
1

CPU Design and Pipelining – Page 1CSCI 4717 – Computer Architecture

CSCI 4717/5717
Computer Architecture

Topic: CPU Operations and Pipelining

Reading: Stallings, Sections 12.3 and 12.4

CPU Design and Pipelining – Page 2CSCI 4717 – Computer Architecture

Instruction Cycle

• Over the past few weeks, we have visited the steps the
processor uses to execute an instruction

• A single instruction may requires many steps:
– Determine address of instruction
– Fetch instruction
– Decode instruction
– Determine address(es) of source operands
– Fetch operand(s)
– Execute instruction
– Determine address(es) where result(s) are to be stored
– Store result(s)
– Check for interrupts

CPU Design and Pipelining – Page 3CSCI 4717 – Computer Architecture

Instruction Cycle (continued)

CPU Design and Pipelining – Page 4CSCI 4717 – Computer Architecture

Indirect Cycle

• Some instructions requires operands, each
of which requires a memory access

• With indirect addressing, an additional
memory access is required to determine
final operand address

• Indirect addressing may be required of more
than one operand, e.g., a source and a
destination

• Each time indirect addressing is used, an
additional operand fetch cycle is required.

CPU Design and Pipelining – Page 5CSCI 4717 – Computer Architecture

Data Flow
• The better we can break up the execution of an

instruction into its sub-cycles, the better we will be
able to optimize the processor’s performance

• This partitioning of the instruction’s operation
depends on the CPU design

• In general, there is a sequence of events that can
be described that make up the execution of an
instruction
– Fetch cycle
– Data fetch cycle
– Indirect cycle
– Execute cycle
– Interrupt cycle

CPU Design and Pipelining – Page 6CSCI 4717 – Computer Architecture

Instruction Fetch

• PC contains address of next instruction
• Address moved to Memory Address

Register (MAR)
• Address placed on address bus
• Control unit requests memory read
• Result placed on data bus, copied to

Memory Buffer Register (MBR), then to IR
• Meanwhile PC incremented by size of

machine code (typically one address)

2

CPU Design and Pipelining – Page 7CSCI 4717 – Computer Architecture

Instruction Fetch (continued)

CPU Design and Pipelining – Page 8CSCI 4717 – Computer Architecture

Data Fetch

• Operand address is fetched into MBR
• IR is examined to determine if indirect addressing

is needed. If so, indirect cycle is performed
– Address of location from which to fetch operand

address is calculated based on first fetch
– Control unit requests memory read
– Result (actual address of operand) moved to MBR

• Address in MBR moved to MAR
• Address placed on address bus
• Control unit requests memory read
• Result placed on data bus, copied to MBR

CPU Design and Pipelining – Page 9CSCI 4717 – Computer Architecture

Execute Cycle

• Due to wide range of instruction complexity,
execute cycle may take one of many forms.
– register-to-register transfer
– memory or I/O read
– ALU operation

• Duration is also widely varied

CPU Design and Pipelining – Page 10CSCI 4717 – Computer Architecture

Interrupt Cycle

• At the end of the execution of an instruction,
interrupts are checked

• Unlike execute cycle, this cycle is simple and
predictable

• Process
– Current PC saved to allow resumption after interrupt
– Contents of PC copied to MBR
– Special memory location (e.g. stack pointer) loaded to

MAR
– MBR written to memory
– PC loaded with address of interrupt handling routine
– Next instruction (first of interrupt handler) can be

fetched

CPU Design and Pipelining – Page 11CSCI 4717 – Computer Architecture

Interrupt Cycle (continued)

CPU Design and Pipelining – Page 12CSCI 4717 – Computer Architecture

Pipelining

As with manufacturing, the concept of
pipelining regarding the operation of a CPU
is to:
– break the process into smaller steps, each step

handled by a sub process
– as soon as one sub process finishes its task, it

passes its result to the next sub process, then
attempts to begin the next task

– multiple tasks being operated on simultaneously
improves performance

3

CPU Design and Pipelining – Page 13CSCI 4717 – Computer Architecture

Breaking an Instruction into Cycles

• A simple approach is to divide instruction
into two stages:
– Fetch instruction
– Execute instruction

• There are times when execution of
instruction doesn’t use main memory

• In these cases, use idle bus to fetch next
instruction in parallel with execution.

• This is called instruction prefetch

CPU Design and Pipelining – Page 14CSCI 4717 – Computer Architecture

Instruction Prefetch

CPU Design and Pipelining – Page 15CSCI 4717 – Computer Architecture

Improved Performance of Prefetch

fetch exec fetch exec fetch exec fetch exec

fetch exec
fetch exec

fetch exec
fetch exec

Instruction 1 Instruction 2 Instruction 3 Instruction 4

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Without prefetch:

With prefetch:

CPU Design and Pipelining – Page 16CSCI 4717 – Computer Architecture

Improved Performance of Prefetch (continued)

• Examining operation of prefetch appears to
take half as many cycles as the number of
instructions increases

• Performance, however, is not doubled:
– Fetch usually shorter than execution
– Prefetch more than one instruction?
– Any jump or branch means that prefetched

instructions are not the required instructions
Add more stages to improve performance

CPU Design and Pipelining – Page 17CSCI 4717 – Computer Architecture

Three Cycle Instruction
The number of cycles it takes to execute a single
instruction is further reduced (to approximately a
third) if we break an instruction into three cycles
(fetch/decode/execute).

Instruction 1

Instruction 2

Instruction 3

Instruction 4

F D E

Instruction 1

F D E

Instruction 2

F D E

Instruction 3

F D E

Instruction 4

F D E

F D E

F D E

F D E

CPU Design and Pipelining – Page 18CSCI 4717 – Computer Architecture

Pipelining Strategy
• If instruction execution could be broken into more

pieces, we could realize even better performance
– Fetch instruction (FI) – Read next instruction into buffer
– Decode instruction (DI) – Determine the opcode
– Calculate operands (CO) – Find effective address of

source operands
– Fetch operands (FO) – Get source operands from

memory
– Execute instructions (EI) – Perform indicated operation
– Write operands (WO) – Store the result

• This decomposition produces nearly equal
durations

4

CPU Design and Pipelining – Page 19CSCI 4717 – Computer Architecture

Sample Timing Diagram for Pipeline

CPU Design and Pipelining – Page 20CSCI 4717 – Computer Architecture

Problems with Previous Figure
(Important Slide!)

• Assumes that each instruction goes through all six
stages of pipeline

• It is possible to have FI, FO, and WO happening at
the same time

• Even with the more detailed decomposition, some
stages will still take more time

• Conditional branches cause even greater
disruption to pipeline than with prefetch

• Interrupts, like conditional branches, will disrupt
pipeline

• CO and FO stages may depend on results of
previous instruction at a point before the WO
stage writes the results

CPU Design and Pipelining – Page 21CSCI 4717 – Computer Architecture

Effects of a Branch in a Pipeline

CPU Design and Pipelining – Page 22CSCI 4717 – Computer Architecture

Flow of a
Six Stage
Pipeline

CPU Design and Pipelining – Page 23CSCI 4717 – Computer Architecture

Alternative
Pipeline
Depiction

CPU Design and Pipelining – Page 24CSCI 4717 – Computer Architecture

More Roadblocks to Realizing Full Speedup

• There are two additional factors that
frustrate improving performance using
pipelining
– Overhead required between stages such as

buffer-to-buffer transfers
– The amount of control logic required to handle

memory and register dependencies and to
control the pipeline itself

• With each added stage, the hardware
needed to support pipelining requires careful
consideration and design

5

CPU Design and Pipelining – Page 25CSCI 4717 – Computer Architecture

Pipeline Performance Equations

Here are some simple measures of pipeline
performance and relative speed up:

τ = time for one stage
τm = maximum stage delay
d = delay of latches between stages
k = number of stages

τ = max[τi] + d = τm + d 1 < i < k

CPU Design and Pipelining – Page 26CSCI 4717 – Computer Architecture

Pipeline Performance Equations (continued)

• In general, d is equivalent to a clock pulse and
τm >> d.

• For n instructions with no branches, the total time
required to execute all n instructions through a
k-stage pipeline, Tk, is:

Tk = [k + (n – 1)]τ

• It takes k cycles to fill the pipeline, then once cycle
each for the remaining n-1 instructions.

CPU Design and Pipelining – Page 27CSCI 4717 – Computer Architecture

Speedup Factor

• For a k-stage pipeline, the ideal speedup calculated with
respect to execution without a pipeline is:

Sk = T1 / Tk

= n·k·τ / [k + (n – 1)]τ
= n·k / [k + (n – 1)]

• As n ∞, the speed up goes to k
• The potential gains of a pipeline are offset by increased

cost, delay between stages, and consequences of a
branch.

CPU Design and Pipelining – Page 28CSCI 4717 – Computer Architecture

Dealing with Branches

A variety of approaches have been used to
reduce the consequences of branches
encountered in a pipelined system:
– Multiple Streams
– Prefetch Branch Target
– Loop buffer
– Branch prediction
– Delayed branching

CPU Design and Pipelining – Page 29CSCI 4717 – Computer Architecture

Multiple Streams

• Branch penalty is a result of having two possible
paths of execution

• Solution: Have two pipelines
• Prefetch each branch into a separate pipeline
• Once outcome of conditional branch is

determined, use appropriate pipeline
• Competing for resources – this method leads to

bus & register contention
• More streams than pipes – multiple branches lead

to further pipelines being needed

CPU Design and Pipelining – Page 30CSCI 4717 – Computer Architecture

Prefetch Branch Target

• Target of branch is prefetched in addition to
instructions following branch

• Keep target until branch is executed
• Used by IBM 360/91

6

CPU Design and Pipelining – Page 31CSCI 4717 – Computer Architecture

Loop Buffer

• Add a small, very fast memory
• Maintained by fetch stage of pipeline
• Use it to contain the n most recently fetched

instructions in sequence.
• Before taking a branch, see if branch target is in

buffer
• Similar in concept to a cache dedicated to

instructions while maintaining an order of
execution

• Used by CRAY-1

CPU Design and Pipelining – Page 32CSCI 4717 – Computer Architecture

Loop Buffer Benefits

• Particularly effective with loops if the buffer is large
enough to contain all of the instructions in a loop.
Instructions only need to be fetched once.

• If executing from within the buffer, buffer acts like
a prefetch by having all of the instructions already
loaded into high-speed memory without having to
access main memory or cache.

CPU Design and Pipelining – Page 33CSCI 4717 – Computer Architecture

Loop Buffer Diagram

CPU Design and Pipelining – Page 34CSCI 4717 – Computer Architecture

Branch Prediction

• There are a number of methods that processors
employ to make an educated guess as to the
direction a branch may take.

• Static
– Predict never taken
– Predict always taken
– Predict by opcode

• Dynamic – depend on execution history
– Taken/not taken switch
– Branch history table

CPU Design and Pipelining – Page 35CSCI 4717 – Computer Architecture

Static Branch Strategies

• Predict Never Taken
– Assume that jump will not happen
– Always fetch next instruction
– 68020 & VAX 11/780
– VAX will not prefetch after branch if a page fault would

result (This is a conflict between the operating system
and the CPU design)

• Predict always taken
– Assume that jump will happen
– Always fetch target instruction

• Predict by Opcode
– Some instructions are more likely to result in a jump

than others
– Can get up to 75% success

CPU Design and Pipelining – Page 36CSCI 4717 – Computer Architecture

Dynamic Branch Strategies

• Attempt to improve accuracy by basing prediction
on history

• Dedicate on or more bits with each branch
instruction to reflect recent history of instruction

• Not stored in memory, rather in high-speed
storage
– one possibility is in cache with instructions (history is

lost when instruction is replaced)
– another is to keep a small with recently executed branch

instructions

7

CPU Design and Pipelining – Page 37CSCI 4717 – Computer Architecture

Taken/Not taken switch

• Storing one bit for history:
– 0: last branch not taken
– 1: last branch taken
– Shortcoming is with loops where first branch is always

predicted wrong since last time through loop, CPU didn’t
branch

• Storing two bits for history:
– 00: branch not taken, followed by branch taken
– 01: branch taken, followed by branch not taken
– 10: two branch taken in a row
– 11: two branch not taken in a row
– Can be optimized for loops

CPU Design and Pipelining – Page 38CSCI 4717 – Computer Architecture

Branch Prediction State Diagram

• Must get two disagreements in a row before switching
prediction

CPU Design and Pipelining – Page 39CSCI 4717 – Computer Architecture

Branch History Table
• There are three things that should be kept in the

branchy history table
• Address of the branch instruction
• Bits indicating branch history
• Branch target information, i.e., where are we going

CPU Design and Pipelining – Page 40CSCI 4717 – Computer Architecture

Delayed Branch

• Possible to improve pipeline performance by
rearranging instructions

• Start making calculations for branch earlier so that
pipeline can filled with real processing while
branch is being assessed

• Chapter 13 will examine this in greater detail

