Precalculus 1 (Algebra)

Chapter 2. Functions and Their Graphs 2.4. Library of Functions; Piecewise-defined Functions—Exercises, Examples, Proofs

- Page 90 Number 28
- 2 Page 91 Number 36
- 3 Page 91 Number 46
- Page 92 Number 54. Federal Income Tax

Page 90 Number 28. Consider $f(x) = \begin{cases} -3x & \text{if } x < -1 \\ 0 & \text{if } x = -1 \\ 2x^2 + 1 & \text{if } x > -1. \end{cases}$ Find (a) f(-2), (b) f(0), (c) f(1), and (d) f(3).

Solution. (a) To find f(-2), we see that x = -2 satisfies x < -1 so we use the piece of f defined as -3x. Hence f(-2) = -3(-2) = 6.

Page 90 Number 28. Consider $f(x) = \begin{cases} -3x & \text{if } x < -1 \\ 0 & \text{if } x = -1 \\ 2x^2 + 1 & \text{if } x > -1. \end{cases}$ Find (a) f(-2), (b) f(0), (c) f(1), and (d) f(3).

Solution. (a) To find f(-2), we see that x = -2 satisfies x < -1 so we use the piece of f defined as -3x. Hence f(-2) = -3(-2) = 6.

(b) To find f(0), we see that x = 0 satisfies x > -1 so we use the piece of f defined as $2x^2 + 1$. Hence $f(0) = 2(0)^2 + 1 = 1$.

Page 90 Number 28. Consider $f(x) = \begin{cases} -3x & \text{if } x < -1 \\ 0 & \text{if } x = -1 \\ 2x^2 + 1 & \text{if } x > -1. \end{cases}$ Find (a) f(-2), (b) f(0), (c) f(1), and (d) f(3).

Solution. (a) To find f(-2), we see that x = -2 satisfies x < -1 so we use the piece of f defined as -3x. Hence f(-2) = -3(-2) = 6.

(b) To find f(0), we see that x = 0 satisfies x > -1 so we use the piece of f defined as $2x^2 + 1$. Hence $f(0) = 2(0)^2 + 1 = 1$.

(c) To find f(1), we see that x = 1 satisfies x > -1 so we use the piece of f defined as $2x^2 + 1$. Hence $f(1) = 2(1)^2 + 1 = 3$.

Page 90 Number 28. Consider $f(x) = \begin{cases} -3x & \text{if } x < -1 \\ 0 & \text{if } x = -1 \\ 2x^2 + 1 & \text{if } x > -1. \end{cases}$ Find (a) f(-2), (b) f(0), (c) f(1), and (d) f(3).

Solution. (a) To find f(-2), we see that x = -2 satisfies x < -1 so we use the piece of f defined as -3x. Hence f(-2) = -3(-2) = 6.

(b) To find f(0), we see that x = 0 satisfies x > -1 so we use the piece of f defined as $2x^2 + 1$. Hence $f(0) = 2(0)^2 + 1 = 1$.

(c) To find f(1), we see that x = 1 satisfies x > -1 so we use the piece of f defined as $2x^2 + 1$. Hence $f(1) = 2(1)^2 + 1 = 3$.

(d) To find f(3), we see that x = 3 satisfies x > -1 so we use the piece of f defined as $2x^2 + 1$. Hence $f(3) = 2(3)^2 + 1 = \boxed{19}$.

Page 90 Number 28. Consider $f(x) = \begin{cases} -3x & \text{if } x < -1 \\ 0 & \text{if } x = -1 \\ 2x^2 + 1 & \text{if } x > -1. \end{cases}$ Find (a) f(-2), (b) f(0), (c) f(1), and (d) f(3).

Solution. (a) To find f(-2), we see that x = -2 satisfies x < -1 so we use the piece of f defined as -3x. Hence f(-2) = -3(-2) = 6.

(b) To find f(0), we see that x = 0 satisfies x > -1 so we use the piece of f defined as $2x^2 + 1$. Hence $f(0) = 2(0)^2 + 1 = 1$.

(c) To find f(1), we see that x = 1 satisfies x > -1 so we use the piece of f defined as $2x^2 + 1$. Hence $f(1) = 2(1)^2 + 1 = 3$.

(d) To find f(3), we see that x = 3 satisfies x > -1 so we use the piece of f defined as $2x^2 + 1$. Hence $f(3) = 2(3)^2 + 1 = \boxed{19}$.

Page 91 Number 36. Consider $f(x) = \begin{cases} -3x & \text{if } x < -1 \\ 0 & \text{if } x = -1 \\ 2x^2 + 1 & \text{if } x > -1. \end{cases}$

(a) Find the domain of f. (b) Locate any intercepts. (c) Graph f.
(d) Based on the graph, find the range. (e) Is f continuous on its domain?

Solution. (a) We see that f is defined for all real number (and there is no division or square roots in any piece of the definition of f), so the

domain of f is all real numbers $\mathbb{R} = (-\infty, \infty)$.

Page 91 Number 36. Consider $f(x) = \begin{cases} -3x & \text{if } x < -1 \\ 0 & \text{if } x = -1 \\ 2x^2 + 1 & \text{if } x > -1. \end{cases}$

(a) Find the domain of f. (b) Locate any intercepts. (c) Graph f.
(d) Based on the graph, find the range. (e) Is f continuous on its domain?

Solution. (a) We see that f is defined for all real number (and there is no division or square roots in any piece of the definition of f), so the

domain of f is all real numbers $\mathbb{R} = (-\infty, \infty)$.

(b) For the y-intercept, we let x = 0. We have $f(0) = 2(0)^2 + 1 = 1$, so the y-intercept is 1.

Page 91 Number 36. Consider $f(x) = \begin{cases} -3x & \text{if } x < -1 \\ 0 & \text{if } x = -1 \\ 2x^2 + 1 & \text{if } x > -1. \end{cases}$

(a) Find the domain of f. (b) Locate any intercepts. (c) Graph f.
(d) Based on the graph, find the range. (e) Is f continuous on its domain?

Solution. (a) We see that f is defined for all real number (and there is no division or square roots in any piece of the definition of f), so the

domain of
$$f$$
 is all real numbers $\mathbb{R} = (-\infty, \infty)$.

(b) For the *y*-intercept, we let x = 0. We have $f(0) = 2(0)^2 + 1 = 1$, so the *y*-intercept is 1. For the *x*-intercept, we set y = f(x) = 0. The first piece of f, -3x, is 0 when x = 0 but we do not use this piece of f when x = 0 and so the first piece of f has no *x*-intercept. The second piece of f, 0, is 0 and so gives an *x*-intercept of -1 (since this is the set of x values for which we use the second piece). The third piece of f, $2x^2 + 1$, is never 0 so this gives no *x*-intercept. So [the *x*-intercept of f is -1].

Page 91 Number 36. Consider $f(x) = \begin{cases} -3x & \text{if } x < -1 \\ 0 & \text{if } x = -1 \\ 2x^2 + 1 & \text{if } x > -1. \end{cases}$

(a) Find the domain of f. (b) Locate any intercepts. (c) Graph f.
(d) Based on the graph, find the range. (e) Is f continuous on its domain?

Solution. (a) We see that f is defined for all real number (and there is no division or square roots in any piece of the definition of f), so the

domain of
$$f$$
 is all real numbers $\mathbb{R} = (-\infty, \infty)$.

(b) For the *y*-intercept, we let x = 0. We have $f(0) = 2(0)^2 + 1 = 1$, so the *y*-intercept is 1. For the *x*-intercept, we set y = f(x) = 0. The first piece of f, -3x, is 0 when x = 0 but we do not use this piece of f when x = 0 and so the first piece of f has no *x*-intercept. The second piece of f, 0, *is* 0 and so gives an *x*-intercept of -1 (since this is the set of x values for which we use the second piece). The third piece of f, $2x^2 + 1$, is never 0 so this gives no *x*-intercept. So the *x*-intercept of f is -1.

Page 91 Number 36 (continued 1)

Page 91 Number 36. Consider $f(x) = \begin{cases} -3x & \text{if } x < -1 \\ 0 & \text{if } x = -1 \\ 2x^2 + 1 & \text{if } x > -1. \end{cases}$

(c) Graph f.

Solution (continued). We know that y = -3x is a line with slope m = -3 and y-intercept 0. We see that the point (x, y) = (-1, 0) is a point on the graph of f. We might expect $y = 2x^2 + 1$ to look somewhat like the graph of $y = x^2$ (this will be explored in more detail in the next section). Some points on the graph of $y = 2x^2 + 1$ are $(-1, 2(-1)^2 + 1) = (-1, 3)$, $(0, 2(0)^2 + 1) = (0, 1)$, $(1, 2(1)^2 + 1) = (1, 3)$, and $(2, 2(2)^2 + 1) = (2, 9)$.

Page 91 Number 36 (continued 1)

Page 91 Number 36. Consider $f(x) = \begin{cases} -3x & \text{if } x < -1 \\ 0 & \text{if } x = -1 \\ 2x^2 + 1 & \text{if } x > -1. \end{cases}$ (c) Graph f.

Solution (continued). We know that y = -3x is a line with slope m = -3 and y-intercept 0. We see that the point (x, y) = (-1, 0) is a point on the graph of f. We might expect $y = 2x^2 + 1$ to look somewhat like the graph of $y = x^2$ (this will be explored in more detail in the next section). Some points on the graph of $y = 2x^2 + 1$ are $(-1, 2(-1)^2 + 1) = (-1, 3), (0, 2(0)^2 + 1) = (0, 1), (1, 2(1)^2 + 1) = (1, 3),$ and $(2, 2(2)^2 + 1) = (2, 9)$ 6-5-4 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Page 91 Number 36 (continued 1)

Page 91 Number 36. Consider $f(x) = \begin{cases} -3x & \text{if } x < -1 \\ 0 & \text{if } x = -1 \\ 2x^2 + 1 & \text{if } x > -1. \end{cases}$ (c) Graph f.

Solution (continued). We know that y = -3x is a line with slope m = -3 and y-intercept 0. We see that the point (x, y) = (-1, 0) is a point on the graph of f. We might expect $y = 2x^2 + 1$ to look somewhat like the graph of $y = x^2$ (this will be explored in more detail in the next section). Some points on the graph of $y = 2x^2 + 1$ are $(-1, 2(-1)^2 + 1) = (-1, 3), (0, 2(0)^2 + 1) = (0, 1), (1, 2(1)^2 + 1) = (1, 3),$ and $(2, 2(2)^2 + 1) = (2, 9)$ 6-5-4 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Page 91 Number 36 (continued 2)

Page 91 Number 36.

(d) Based on the graph, find the range. (e) Is f continuous on its domain?

Page 91 Number 36 (continued 2)

Page 91 Number 36.

(d) Based on the graph, find the range. (e) Is f continuous on its domain? Solution (continued). (d) The range is the set of all y-values for which there is a corresponding point on the graph of f, so we see from the graph that the range includes all $y \ge 1$ along with y = 0. That is, the range is $\{0\} \cup [1, \infty)$.

(e) f is not continuous on its domain because it has a discontinuity at x = -1 where there is a hole in the graph.

Page 91 Number 36 (continued 2)

Page 91 Number 36.

(d) Based on the graph, find the range. (e) Is f continuous on its domain? Solution (continued). (d) The range is the set of all y-values for which there is a corresponding point on the graph of f, so we see from the graph that the range includes all $y \ge 1$ along with y = 0. That is, the range is $\{0\} \cup [1, \infty)$.

(e) f is not continuous on its domain because it has a discontinuity at x = -1 where there is a hole in the graph.

Page 91 Number 46. Write a definition for the given function f.

Solution. The left piece of function f is a line segment containing the two points $(x_1, y_1) = (-1, 0)$ and $(x_2, y_2) = (0, 2)$, so we find a formula for this line. The slope of the line is $m = (y_2 - y_1)/(x_2 - x_1) = ((2) - (0))/((0) - (-1)) = 2$, so from the point-slope formula for a line we have $y - y_1 = m(x - x_1)$ or y - (0) = 2(x - (-1)) or y = 2x + 2. We see from the graph that we use this piece for x in the interval [-1, 0] (or $-1 \le x \le 0$).

Page 91 Number 46. Write a definition for the given function f.

Solution. The left piece of function f is a line segment containing the two points $(x_1, y_1) = (-1, 0)$ and $(x_2, y_2) = (0, 2)$, so we find a formula for this line. The slope of the line is $m = (y_2 - y_1)/(x_2 - x_1) = ((2) - (0))/((0) - (-1)) = 2$, so from the point-slope formula for a line we have $y - y_1 = m(x - x_1)$ or y - (0) = 2(x - (-1)) or y = 2x + 2. We see from the graph that we use this piece for x in the interval [-1, 0] (or $-1 \le x \le 0$).

Page 91 Number 46 (continued 1)

Page 91 Number 46. Write a definition for the given function f.

Solution (continued). The right piece of function f is a line segment containing the two points $(x_1, y_1) = (1, 1)$ and $(x_2, y_2) = (2, 2)$, so we find a formula for this line. The slope of the line is $m = (y_2 - y_1)/(x_2 - x_1) = ((2) - (1))/((2) - (1)) = 1$, so from the point-slope formula for a line we have $y - y_1 = m(x - x_1)$ or y - (1) = 1(x - (1)) or y = x. We see from the graph that we use this piece for x in the interval $(0, \infty)$ (or x > 0).

Page 91 Number 46 (continued 1)

Page 91 Number 46. Write a definition for the given function f.

Solution (continued). The right piece of function f is a line segment containing the two points $(x_1, y_1) = (1, 1)$ and $(x_2, y_2) = (2, 2)$, so we find a formula for this line. The slope of the line is $m = (y_2 - y_1)/(x_2 - x_1) = ((2) - (1))/((2) - (1)) = 1$, so from the point-slope formula for a line we have $y - y_1 = m(x - x_1)$ or y - (1) = 1(x - (1)) or y = x. We see from the graph that we use this piece for x in the interval $(0, \infty)$ (or x > 0).

Page 91 Number 46 (continued 2)

Page 91 Number 46. Write a definition for the given function f.

Solution (continued). So the definition of *f* is

$$f(x) = \begin{cases} 2x+2 & \text{if } -1 \le x \le 0\\ x & \text{if } x > 0. \end{cases}$$

Page 91 Number 46 (continued 2)

Page 91 Number 46. Write a definition for the given function f.

Solution (continued). So the definition of *f* is

$$f(x) = \begin{cases} 2x+2 & \text{if } -1 \le x \le 0\\ x & \text{if } x > 0. \end{cases}$$

Page 92 Number 54. Two 2014 Tax Rate Schedules are given in the accompanying table. If x equals taxable income and y equals the tax due, construct a function y = f(x) for Schedule Y-1.

2014 Tax Rate Schedules												
Schedule X—Single						Schedule Y-1—Married Filing Jointly or Qualified Widow(er)						
lf Taxable Income is Over	But Not Over	The Tax is This Amount		Plus This %	Of the Excess Over	lf Taxable Income is Over	But Not Over	The Tax is This Amount		Plus This %	Of the Excess Over	
\$0	\$9,075	\$0	+	10%	\$0	\$0	\$18,150	\$0	+	10%	\$0	
9,075	36,900	907.50	+	15%	9,075	18,150	73,800	1,815	+	1 5%	18,150	
36,900	89,350	5,081.25	+	25%	36,900	73,800	148,850	10,162.50	+	25%	73,800	
89,350	186,350	18,193.75	+	28%	89,350	148,850	226,850	28,925.00	+	28%	148,850	
186,350	405,100	45,353.75	+	33%	186,350	226,850	405,100	50,765.00	+	33%	226,850	
405,100	406,750	117,541.25	+	35%	405,100	405,100	457,600	109,587.50	+	35%	405,100	
406,750	-	118,188.75	+	39.6%	406,750	457,600	-	127,962.50	+	39.6%	457,600	

Solution. With x as taxable income, we first see that for $0 < x \le 18,150$ the tax due is 0 plus 10% of x, or 0 + 0.10x. For $18,150 < x \le 73,800$ the tax due is 1,815 plus 15% of the excess of x over 18,150, or 1,815 + 0.15(x - 18,150).

Page 92 Number 54. Two 2014 Tax Rate Schedules are given in the accompanying table. If x equals taxable income and y equals the tax due, construct a function y = f(x) for Schedule Y-1.

2014 Tax Rate Schedules												
Schedule X—Single						Schedule Y-1—Married Filing Jointly or Qualified Widow(er)						
lf Taxable Income is Over	But Not Over	The Tax is This Amount		Plus This %	Of the Excess Over	lf Taxable Income is Over	But Not Over	The Tax is This Amount		Plus This %	Of the Excess Over	
\$0	\$9,075	\$0	+	10%	\$0	\$0	\$18,150	\$0	+	10%	\$0	
9,075	36,900	907.50	+	15%	9,075	18,150	73,800	1,815	+	1 5%	18,150	
36,900	89,350	5,081.25	+	25%	36,900	73,800	148,850	10,162.50	+	25%	73,800	
89,350	186,350	18,193.75	+	28%	89,350	148,850	226,850	28,925.00	+	28%	148,850	
186,350	405,100	45,353.75	+	33%	186,350	226,850	405,100	50,765.00	+	33%	226,850	
405,100	406,750	117,541.25	+	35%	405,100	405,100	457,600	109,587.50	+	35%	405,100	
406,750	-	118,188.75	+	39.6%	406,750	457,600	-	127,962.50	+	39.6%	457,600	

Solution. With x as taxable income, we first see that for $0 < x \le 18,150$ the tax due is 0 plus 10% of x, or 0 + 0.10x. For $18,150 < x \le 73,800$ the tax due is 1,815 plus 15% of the excess of x over 18,150, or 1,815 + 0.15(x - 18,150).

Page 92 Number 54 (continued)

Solution (continued). Similarly for 73,800 $< x \le 148,850$ the tax due is 10,162.50 + 0.25(x - 73,800). For 148,850 $< x \le 226,850$ the tax due is 28,925 + 0.28(x - 148,850). For 226,850 $< x \le 405,100$ the tax due is 50,765 + 0.33(x - 226,850). For 405,100 $< x \le 457,600$ the tax due is 109,587.50 + 0.35(x - 405,100). For 457,600 < x the tax due is 127,962.50 + 0.396(x - 457,600). So

$$(x) = \begin{cases} 0 + 0.10x \\ 1,815 + 0.15(x - 18,150) \\ 10,162.50 + 0.25(x - 73,800) \\ 28,925 + 0.28(x - 148,850) \\ 50,765 + 0.33(x - 226,850) \\ 109,587.50 + 0.35(x - 405,100) \\ 127,962.50 + 0.396(x - 457,600) \end{cases}$$

if $0 < x \le 18,150$ if $18,150 < x \le 73,800$ if $73,800 < x \le 148,850$ if $148,850 < x \le 226,850$ if $226,850 < x \le 405,100$ if $405,100 < x \le 457,600$ if 457,600 < x

Page 92 Number 54 (continued)

Solution (continued). Similarly for 73,800 $< x \le 148,850$ the tax due is 10,162.50 + 0.25(x - 73,800). For 148,850 $< x \le 226,850$ the tax due is 28,925 + 0.28(x - 148,850). For 226,850 $< x \le 405,100$ the tax due is 50,765 + 0.33(x - 226,850). For 405,100 $< x \le 457,600$ the tax due is 109,587.50 + 0.35(x - 405,100). For 457,600 < x the tax due is 127,962.50 + 0.396(x - 457,600). So

$$f(x) = \begin{cases} 0 + 0.10x & \text{if } 0 < x \le 18,150 \\ 1,815 + 0.15(x - 18,150) & \text{if } 18,150 < x \le 73,800 \\ 10,162.50 + 0.25(x - 73,800) & \text{if } 73,800 < x \le 148,850 \\ 28,925 + 0.28(x - 148,850) & \text{if } 148,850 < x \le 226,850 \\ 50,765 + 0.33(x - 226,850) & \text{if } 226,850 < x \le 405,100 \\ 109,587.50 + 0.35(x - 405,100) & \text{if } 405,100 < x \le 457,600 \\ 127,962.50 + 0.396(x - 457,600) & \text{if } 457,600 < x \end{cases}$$