Precalculus 1 (Algebra)

Chapter 2. Functions and Their Graphs 2.6. Mathematical Models: Building Functions—Exercises, Examples, Proofs

Table of contents

- [Page 106 Example 2.6.1. Finding the Distance from the Origin to a](#page-2-0) [Point on a Graph.](#page-2-0)
- 2 [Page 109 Number 6](#page-7-0)
- 3 [Page 109 Number 10](#page-11-0)
- 4 [Page 110 Number 16](#page-14-0)
- 5 [Page 110 Number 20. Inscribing a Cylinder in a Sphere](#page-21-0)
- 6 [Page 110 Number 22](#page-23-0)

Page 106 Example 2.6.1

Page 106 Example 2.6.1. Let $P = (x, y)$ be a point on the graph of $y = x^2 - 1$. (a) Express the distance d from P to the origin O as a function of x. (b) What is *d* if $x = 0$? (c) What is *d* if $x = 1$. (d) What is *d* if $x = \sqrt{2}/2$?

Solution. (a) From the distance formula, $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x - 0)^2 + (y - 0)^2} = \sqrt{x^2 + y^2} =$ $\sqrt{x^2 + (x^2 - 1)^2} =$ √ $x^2 + x^4 - 2x^2 + 1 = \sqrt{x^4 - x^2 + 1}.$

Page 106 Example 2.6.1

Page 106 Example 2.6.1. Let $P = (x, y)$ be a point on the graph of $y = x^2 - 1$. (a) Express the distance d from P to the origin O as a function of x. (b) What is *d* if $x = 0$? (c) What is *d* if $x = 1$. (d) What is *d* if $x = \sqrt{2}/2$?

Solution. (a) From the distance formula, $d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}=\sqrt{(x-0)^2+(y-0)^2}=\sqrt{x^2+y^2}=$ $\sqrt{x^2 + (x^2 - 1)^2} =$ √ $\frac{x^2 + x^4 - 2x^2 + 1}{x^2 + x^4 - 2x^2 + 1} = \sqrt{x^4 - x^2 + 1}.$

Page 106 Example 2.6.1 (continued)

Page 106 Example 2.6.1. Let $P = (x, y)$ be a point on the graph of $y=x^2-1.$ (a) Express the distance d from P to the origin O as a function of x. (b) What is *d* if $x = 0$? (c) What is *d* if $x = 1$. (d) What is *d* if $x = \sqrt{2}/2$?

Solution. (b) From part (a),
$$
d = \sqrt{x^4 - x^2 + 1}
$$
. So when $x = 0$, $d = \sqrt{(0)^4 - (0)^2 + 1} = 1$.

(c) When
$$
x = 1
$$
, $d = \sqrt{(1)^4 - (1)^2 + 1} = 1$.

Page 106 Example 2.6.1 (continued)

Page 106 Example 2.6.1. Let $P = (x, y)$ be a point on the graph of $y=x^2-1.$ (a) Express the distance d from P to the origin O as a function of x. (b) What is *d* if $x = 0$? (c) What is *d* if $x = 1$. (d) What is *d* if $x = \sqrt{2}/2$?

Solution. (b) From part (a),
$$
d = \sqrt{x^4 - x^2 + 1}
$$
. So when $x = 0$, $d = \sqrt{(0)^4 - (0)^2 + 1} = 1$.

(c) When
$$
x = 1
$$
, $d = \sqrt{(1)^4 - (1)^2 + 1} = 1$.

(d) When
$$
x = \sqrt{2}/2
$$
,
\n
$$
d = \sqrt{(\sqrt{2}/2)^4 - (\sqrt{2}/2)^2 + 1} = \sqrt{1/4 - 1/2 + 1} = \sqrt{3/4}.
$$

Page 106 Example 2.6.1 (continued)

Page 106 Example 2.6.1. Let $P = (x, y)$ be a point on the graph of $y=x^2-1.$ (a) Express the distance d from P to the origin O as a function of x. (b) What is *d* if $x = 0$? (c) What is *d* if $x = 1$. (d) What is *d* if $x = \sqrt{2}/2$?

Solution. (b) From part (a),
$$
d = \sqrt{x^4 - x^2 + 1}
$$
. So when $x = 0$, $d = \sqrt{(0)^4 - (0)^2 + 1} = 1$.

(c) When
$$
x = 1
$$
, $d = \sqrt{(1)^4 - (1)^2 + 1} = 1$.

(d) When
$$
x = \sqrt{2}/2
$$
,
\n
$$
d = \sqrt{(\sqrt{2}/2)^4 - (\sqrt{2}/2)^2 + 1} = \sqrt{1/4 - 1/2 + 1} = \sqrt{3/4}.
$$

Page 109 Number 6. A right triangle has one vertex on the graph of $y=9-x^2,\,x>0,$ at $(x,y),$ another at the origin, and the third on the positive x-axis at $(x, 0)$. Express the area A of the triangle as a function of x.

Page 109 Number 6. A right triangle has one vertex on the graph of $y=9-x^2,\,x>0,$ at $(x,y),$ another at the origin, and the third on the positive x-axis at $(x, 0)$. Express the area A of the triangle as a function of x.

Page 109 Number 6. A right triangle has one vertex on the graph of $y=9-x^2,\,x>0,$ at $(x,y),$ another at the origin, and the third on the positive x-axis at $(x, 0)$. Express the area A of the triangle as a function of x.

The base of the triangle is
$$
b = x
$$
 and the
height is $h = y = 9 - x^2$. So the area is

$$
A = \frac{1}{2}bh = \frac{1}{2}x(9 - x^2).
$$

Page 109 Number 6. A right triangle has one vertex on the graph of $y=9-x^2,\,x>0,$ at $(x,y),$ another at the origin, and the third on the positive x-axis at $(x, 0)$. Express the area A of the triangle as a function of x.

The base of the triangle is
$$
b = x
$$
 and the
height is $h = y = 9 - x^2$. So the area is

$$
A = \frac{1}{2}bh = \frac{1}{2}x(9 - x^2).
$$

Page 109 Number 10. A circle of radius r is inscribed in a square. See the figure.

(a) Express the area A of the square as a function of the radius r of the circle. (b) Express the perimeter p of the square as a function of r.

Solution. (a) Since the length ℓ of an edge of the square is twice the radius of the circle 2r, then $\ell = 2r$. Since the area of a square with side of length ℓ is $A = \ell^2$, then $A = (2r)^2 = 4r^2$.

Page 109 Number 10. A circle of radius r is inscribed in a square. See the figure.

(a) Express the area A of the square as a function of the radius r of the circle. (b) Express the perimeter p of the square as a function of r.

Solution. (a) Since the length ℓ of an edge of the square is twice the radius of the circle 2r, then $\ell = 2r$. Since the area of a square with side of length ℓ is $A = \ell^2$, then $|A = (2r)^2 = 4r^2|$.

Page 109 Number 10 (continued)

Page 109 Number 10. A circle of radius r is inscribed in a square. See the figure.

(a) Express the area A of the square as a function of the radius r of the circle. (b) Express the perimeter p of the square as a function of r.

Solution (continued). (b) As observed in part (a), the length ℓ of the edge of the square $\ell = 2r$. Since the perimeter of a square with side of length ℓ is $p = 4\ell$, then $p = 4(2r) = 8r$.

Page 110 Number 16. An equilateral triangle is inscribed in a circle of radius r . See the figure. Express the circumference C of the circle as a function of the length x of a side of the triangle.

Solution. First, we need a relationship between x and r .

Page 110 Number 16. An equilateral triangle is inscribed in a circle of radius r . See the figure. Express the circumference C of the circle as a function of the length x of a side of the triangle.

Solution. First, we need a relationship between x and r .

Page 110 Number 16 (continued)

Solution. We introduce the two right triangles in the figure. So by the Pythagorean Theorem we have for the red triangle that $y^2 + (x/2)^2 = r^2$ or $x^2/4 = r^2 - y^2$, and for the blue triangle that $(r+y)^2 + (x/2)^2 = x^2$ or $(r+y)^2 = x^2 - x^2/4 = 3x^2/4.$

Page 110 Number 16 (continued)

Solution. We introduce the two right triangles in the figure. So by the Pythagorean Theorem we have for the red triangle that $y^2 + (x/2)^2 = r^2$ or $x^2/4 = r^2 - y^2$, and for the blue triangle that $(r+y)^2 + (x/2)^2 = x^2$ or $(r+y)^2 = x^2 - x^2/4 = 3x^2/4$. Substituting $x^2/4 = r^2 - y^2$ into $(r+y)^2 = 3(x^2/4)$ gives $(r+y)^2 = 3(r^2 - y^2) = 3(r-y)(r+y)$ or $r + v = 3(r - v)$ or $4v = 2r$ or $v = r/2$.

Page 110 Number 16 (continued)

Solution. We introduce the two right triangles in the figure. So by the Pythagorean Theorem we have for the red triangle that $y^2 + (x/2)^2 = r^2$ or $x^2/4 = r^2 - y^2$, and for the blue triangle that $(r+y)^2 + (x/2)^2 = x^2$ or $(r+y)^2 = x^2 - x^2/4 = 3x^2/4$. Substituting $x^2/4 = r^2 - y^2$ into $(r+y)^2 = 3(x^2/4)$ gives $(r+y)^2 = 3(r^2 - y^2) = 3(r-y)(r+y)$ or $r + y = 3(r - y)$ or $4y = 2r$ or $y = r/2$. Since (from the red triangle) $y^2 + (x/2)^2 = r^2$ then we have $(r/2)^2 + (x/2)^2 = r^2$ or $r^2/4 + x^2/4 = r^2$ or $r^2 + x^2 = 4r^2$ or $x^2 = 3r^2$ or $r^2 = x^2/3$ or (since r and x are positive) $r = x/\sqrt{3}$.

Page 110 Number 16 (continued)

Solution. We introduce the two right triangles in the figure. So by the Pythagorean Theorem we have for the red triangle that $y^2 + (x/2)^2 = r^2$ or $x^2/4 = r^2 - y^2$, and for the blue triangle that $(r+y)^2 + (x/2)^2 = x^2$ or $(r+y)^2 = x^2 - x^2/4 = 3x^2/4$. Substituting $x^2/4 = r^2 - y^2$ into $(r+y)^2 = 3(x^2/4)$ gives $(r+y)^2 = 3(r^2 - y^2) = 3(r-y)(r+y)$ or $r + y = 3(r - y)$ or $4y = 2r$ or $y = r/2$. Since (from the red triangle) $y^2 + (x/2)^2 = r^2$ then we have $(r/2)^2 + (x/2)^2 = r^2$ or $r^2/4 + x^2/4 = r^2$ or $r^2 + x^2 = 4r^2$ or $x^2 = 3r^2$ or $r^2 = x^2/3$ or (since r and x are positive) $r = x/\sqrt{3}.$ Since the circumference C of a circle of radius r is $C = 2\pi r,$ then $|C = 2\pi x/$ √ 3 .

Page 110 Number 16 (continued)

Solution. We introduce the two right triangles in the figure. So by the Pythagorean Theorem we have for the red triangle that $y^2 + (x/2)^2 = r^2$ or $x^2/4 = r^2 - y^2$, and for the blue triangle that $(r+y)^2 + (x/2)^2 = x^2$ or $(r+y)^2 = x^2 - x^2/4 = 3x^2/4$. Substituting $x^2/4 = r^2 - y^2$ into $(r+y)^2 = 3(x^2/4)$ gives $(r+y)^2 = 3(r^2 - y^2) = 3(r-y)(r+y)$ or $r + y = 3(r - y)$ or $4y = 2r$ or $y = r/2$. Since (from the red triangle) $y^2 + (x/2)^2 = r^2$ then we have $(r/2)^2 + (x/2)^2 = r^2$ or $r^2/4 + x^2/4 = r^2$ or $r^2 + x^2 = 4r^2$ or $x^2 = 3r^2$ or $r^2 = x^2/3$ or (since r and x are positive) $r = x/\sqrt{3}.$ Since the circumference C of a circle of radius r is $C = 2\pi r,$ then $|C = 2\pi x/$ √ 3 .

Page 110 Number 20. Inscribe a right circular cylinder of height h and radius r in a sphere of fixed radius R . See the illustration. Express the volume V of the cylinder as a function of h .

Solution. The triangle in the illustration has height $h/2$, so by the Pythagorean Theorem we have $(h/2)^2 + r^2 = R^2$. The volume of a cylinder with height h and radius r is $V=\pi r^2 h$. Since $(h/2)^2 + r^2 = R^2$ then $r^2=R^2-h^2/4$ and so we have $\mid V=\pi (R^2-h^2/4)h\mid^2$.

Page 110 Number 20. Inscribe a right circular cylinder of height h and radius r in a sphere of fixed radius R . See the illustration. Express the volume V of the cylinder as a function of h .

Solution. The triangle in the illustration has height $h/2$, so by the Pythagorean Theorem we have $(h/2)^2 + r^2 = R^2$. The volume of a cylinder with height h and radius r is $V=\pi r^2 h$. Since $(\hbar/2)^2 + r^2 = R^2$ then $r^2=R^2-h^2/4$ and so we have $\mid V=\pi (R^2-h^2/4)h\!\mid$.

Page 110 Number 22. MetroMedia Cable is asked to provide service to a customer whose house is located 2 miles from the road along which the cable is buried. The nearest connection box for the cable is located 5 miles down the road. See the figure.

(a) If the installation cost is \$500 per mile along the road and \$700 per mile off the road, build a model that expresses the total cost c of installation as a function of the distance x (in miles) from the connection box to the point where the cable installation turns off the road. Find the domain of $c = c(x)$. (b) Compute the cost if $x = 1$ mile. (c) Compute the cost if $x = 3$ miles.

Page 110 Number 22 (continued 1)

Page 110 Number 22. (a) If the installation cost is \$500 per mile along the road and \$700 per mile off the road, build a model that expresses the total cost C of installation as a function of the distance x (in miles) from the connection box to the point where the cable installation turns off the road. Find the domain of $c = c(x)$.

Solution. (a) We let y be the distance from the house to the point where the cable installation turns off the road. We then have a right triangle with side of length y as follows:

Page 110 Number 22 (continued 1)

Page 110 Number 22. (a) If the installation cost is \$500 per mile along the road and \$700 per mile off the road, build a model that expresses the total cost C of installation as a function of the distance x (in miles) from the connection box to the point where the cable installation turns off the road. Find the domain of $c = c(x)$.

Solution. (a) We let y be the distance from the house to the point where the cable installation turns off the road. We then have a right triangle with side of length y as follows:

By the Pythagorean Theorem we have $(2)^2 + (5 - x)^2 = y^2$ or (since y is a distance and hence positive) $y = \sqrt{4 + (5 - x)^2} = \sqrt{4 + (25 - 10x + x^2)} = \sqrt{29 - 10x + x^2}$. [Precalculus 1 \(Algebra\)](#page-0-0) **August 26, 2019** 12 / 13

Page 110 Number 22 (continued 1)

Page 110 Number 22. (a) If the installation cost is \$500 per mile along the road and \$700 per mile off the road, build a model that expresses the total cost C of installation as a function of the distance x (in miles) from the connection box to the point where the cable installation turns off the road. Find the domain of $c = c(x)$.

Solution. (a) We let y be the distance from the house to the point where the cable installation turns off the road. We then have a right triangle with side of length y as follows:

By the Pythagorean Theorem we have $(2)^2 + (5 - x)^2 = y^2$ or (since y is a distance and hence positive) $y = \sqrt{4 + (5 - x)^2} = \sqrt{4 + (25 - 10x + x^2)} = \sqrt{29 - 10x + x^2}$. [Precalculus 1 \(Algebra\)](#page-0-0) August 26, 2019 12 / 13

Page 110 Number 22 (continued 2)

Page 110 Number 22. (b) Compute the cost if $x = 1$ mile. (c) Compute the cost if $x = 3$ miles.

Solution (continued). \ldots $y=$ √ $29-10x+x^2$. In terms of x and y, the cost is $c = 500x + 700y$. So $\boxed{c(x) = 500x + 700\sqrt{29 - 10x + x^2}}$.

(b) With
$$
x = 1
$$
 we have
\n
$$
c(1) = 500(1) + 700\sqrt{29 - 10(1) + (1)^2} = 500 + 700\sqrt{20} \approx
$$
\n3630.50 dollars.

Page 110 Number 22 (continued 2)

Page 110 Number 22. (b) Compute the cost if $x = 1$ mile. (c) Compute the cost if $x = 3$ miles.

Solution (continued). \ldots $y=$ √ $29-10x+x^2$. In terms of x and y, the cost is $c = 500x + 700y$. So $\boxed{c(x) = 500x + 700\sqrt{29 - 10x + x^2}}$.

(b) With
$$
x = 1
$$
 we have
 $c(1) = 500(1) + 700\sqrt{29 - 10(1) + (1)^2} = 500 + 700\sqrt{20} \approx$
3630.50 dollars.

(c) With $x = 3$ we have **c**(3) = 500(3) + 700 $\sqrt{29 - 10(3) + (3)^2}$ = 1500 + 700 $\sqrt{8}$ ≈ 3479.90 dollars .

Page 110 Number 22 (continued 2)

Page 110 Number 22. (b) Compute the cost if $x = 1$ mile. (c) Compute the cost if $x = 3$ miles.

Solution (continued). \ldots $y=$ √ $29-10x+x^2$. In terms of x and y, the cost is $c = 500x + 700y$. So $\boxed{c(x) = 500x + 700\sqrt{29 - 10x + x^2}}$.

(b) With
$$
x = 1
$$
 we have

$$
c(1) = 500(1) + 700\sqrt{29 - 10(1) + (1)^2} = 500 + 700\sqrt{20} \approx
$$

3630.50 dollars.

(c) With $x = 3$ we have (c) with $x = 3$ we have
c(3) = 500(3) + 700 $\sqrt{29 - 10(3) + (3)^2}$ = 1500 + 700 $\sqrt{8}$ ≈ 3479.90 dollars