Precalculus 1 (Algebra)

Chapter 2. Functions and Their Graphs 2.6. Mathematical Models: Building Functions—Exercises, Examples, Proofs

Table of contents

- Page 106 Example 2.6.1. Finding the Distance from the Origin to a Point on a Graph.
- 2 Page 109 Number 6
- 3 Page 109 Number 10
- Page 110 Number 16
- 5 Page 110 Number 20. Inscribing a Cylinder in a Sphere
- 6 Page 110 Number 22

Page 106 Example 2.6.1

Page 106 Example 2.6.1. Let P = (x, y) be a point on the graph of $y = x^2 - 1$. (a) Express the distance d from P to the origin O as a function of x. (b) What is d if x = 0? (c) What is d if x = 1. (d) What is d if $x = \sqrt{2}/2$?

Solution. (a) From the distance formula, $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x - 0)^2 + (y - 0)^2} = \sqrt{x^2 + y^2} = \sqrt{x^2 + (x^2 - 1)^2} = \sqrt{x^2 + x^4 - 2x^2 + 1} = \sqrt{x^4 - x^2 + 1}.$

Page 106 Example 2.6.1

Page 106 Example 2.6.1. Let P = (x, y) be a point on the graph of $y = x^2 - 1$. (a) Express the distance *d* from *P* to the origin *O* as a function of *x*. (b) What is *d* if x = 0? (c) What is *d* if x = 1. (d) What is *d* if $x = \sqrt{2}/2$?

Solution. (a) From the distance formula, $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x - 0)^2 + (y - 0)^2} = \sqrt{x^2 + y^2} = \sqrt{x^2 + (x^2 - 1)^2} = \sqrt{x^2 + x^4 - 2x^2 + 1} = \sqrt{x^4 - x^2 + 1}.$

Page 106 Example 2.6.1 (continued)

Page 106 Example 2.6.1. Let P = (x, y) be a point on the graph of $y = x^2 - 1$. (a) Express the distance *d* from *P* to the origin *O* as a function of *x*. (b) What is *d* if x = 0? (c) What is *d* if x = 1. (d) What is *d* if $x = \sqrt{2}/2$?

Solution. (b) From part (a), $d = \sqrt{x^4 - x^2 + 1}$. So when x = 0, $d = \sqrt{(0)^4 - (0)^2 + 1} = 1$.

(c) When
$$x = 1$$
, $d = \sqrt{(1)^4 - (1)^2 + 1} = 1$.

Page 106 Example 2.6.1 (continued)

Page 106 Example 2.6.1. Let P = (x, y) be a point on the graph of $y = x^2 - 1$. (a) Express the distance *d* from *P* to the origin *O* as a function of *x*. (b) What is *d* if x = 0? (c) What is *d* if x = 1. (d) What is *d* if $x = \sqrt{2}/2$?

Solution. (b) From part (a), $d = \sqrt{x^4 - x^2 + 1}$. So when x = 0, $d = \sqrt{(0)^4 - (0)^2 + 1} = 1$.

(c) When
$$x = 1$$
, $d = \sqrt{(1)^4 - (1)^2 + 1} = 1$.

(d) When
$$x = \sqrt{2}/2$$
,
 $d = \sqrt{(\sqrt{2}/2)^4 - (\sqrt{2}/2)^2 + 1} = \sqrt{1/4 - 1/2 + 1} = \sqrt{3/4}$

Page 106 Example 2.6.1 (continued)

Page 106 Example 2.6.1. Let P = (x, y) be a point on the graph of $y = x^2 - 1$. (a) Express the distance *d* from *P* to the origin *O* as a function of *x*. (b) What is *d* if x = 0? (c) What is *d* if x = 1. (d) What is *d* if $x = \sqrt{2}/2$?

Solution. (b) From part (a), $d = \sqrt{x^4 - x^2 + 1}$. So when x = 0, $d = \sqrt{(0)^4 - (0)^2 + 1} = 1$.

(c) When
$$x = 1$$
, $d = \sqrt{(1)^4 - (1)^2 + 1} = 1$.

(d) When
$$x = \sqrt{2}/2$$
,
 $d = \sqrt{(\sqrt{2}/2)^4 - (\sqrt{2}/2)^2 + 1} = \sqrt{1/4 - 1/2 + 1} = \sqrt{3/4}$

Page 109 Number 6. A right triangle has one vertex on the graph of $y = 9 - x^2$, x > 0, at (x, y), another at the origin, and the third on the positive x-axis at (x, 0). Express the area A of the triangle as a function of x.

Page 109 Number 6. A right triangle has one vertex on the graph of $y = 9 - x^2$, x > 0, at (x, y), another at the origin, and the third on the positive x-axis at (x, 0). Express the area A of the triangle as a function of x.

Page 109 Number 6. A right triangle has one vertex on the graph of $y = 9 - x^2$, x > 0, at (x, y), another at the origin, and the third on the positive x-axis at (x, 0). Express the area A of the triangle as a function of x.

The base of the triangle is
$$b = x$$
 and the height is $h = y = 9 - x^2$. So the area is $A = \frac{1}{2}bh = \frac{1}{2}x(9 - x^2)$.

Page 109 Number 6. A right triangle has one vertex on the graph of $y = 9 - x^2$, x > 0, at (x, y), another at the origin, and the third on the positive x-axis at (x, 0). Express the area A of the triangle as a function of x.

The base of the triangle is
$$b = x$$
 and the height is $h = y = 9 - x^2$. So the area is
$$A = \frac{1}{2}bh = \frac{1}{2}x(9 - x^2)$$

Page 109 Number 10. A circle of radius *r* is inscribed in a square. See the figure.

(a) Express the area A of the square as a function of the radius r of the circle. (b) Express the perimeter p of the square as a function of r.

Solution. (a) Since the length ℓ of an edge of the square is twice the radius of the circle 2r, then $\ell = 2r$. Since the area of a square with side of length ℓ is $A = \ell^2$, then $A = (2r)^2 = 4r^2$.

Page 109 Number 10. A circle of radius *r* is inscribed in a square. See the figure.

(a) Express the area A of the square as a function of the radius r of the circle. (b) Express the perimeter p of the square as a function of r.

Solution. (a) Since the length ℓ of an edge of the square is twice the radius of the circle 2r, then $\ell = 2r$. Since the area of a square with side of length ℓ is $A = \ell^2$, then $A = (2r)^2 = 4r^2$.

Page 109 Number 10 (continued)

Page 109 Number 10. A circle of radius *r* is inscribed in a square. See the figure.

(a) Express the area A of the square as a function of the radius r of the circle. (b) Express the perimeter p of the square as a function of r.

Solution (continued). (b) As observed in part (a), the length ℓ of the edge of the square $\ell = 2r$. Since the perimeter of a square with side of length ℓ is $p = 4\ell$, then p = 4(2r) = 8r.

Page 110 Number 16. An equilateral triangle is inscribed in a circle of radius r. See the figure. Express the circumference C of the circle as a function of the length x of a side of the triangle.

Solution. First, we need a relationship between *x* and *r*.

Page 110 Number 16. An equilateral triangle is inscribed in a circle of radius r. See the figure. Express the circumference C of the circle as a function of the length x of a side of the triangle.

Solution. First, we need a relationship between *x* and *r*.

Page 110 Number 16 (continued)

Solution. We introduce the two right triangles in the figure. So by the Pythagorean Theorem we have for the red triangle that $y^2 + (x/2)^2 = r^2$ or $x^2/4 = r^2 - y^2$, and for the blue triangle that $(r + y)^2 + (x/2)^2 = x^2$ or $(r + y)^2 = x^2 - x^2/4 = 3x^2/4$.

Page 110 Number 16 (continued)

Solution. We introduce the two right triangles in the figure. So by the Pythagorean Theorem we have for the red triangle that $y^2 + (x/2)^2 = r^2$ or $x^2/4 = r^2 - y^2$, and for the blue triangle that $(r + y)^2 + (x/2)^2 = x^2$ or $(r + y)^2 = x^2 - x^2/4 = 3x^2/4$. Substituting $x^2/4 = r^2 - y^2$ into $(r + y)^2 = 3(x^2/4)$ gives $(r + y)^2 = 3(r^2 - y^2) = 3(r - y)(r + y)$ or r + y = 3(r - y) or 4y = 2r or y = r/2.

Page 110 Number 16 (continued)

Solution. We introduce the two right triangles in the figure. So by the Pythagorean Theorem we have for the red triangle that $y^2 + (x/2)^2 = r^2$ or $x^2/4 = r^2 - y^2$, and for the blue triangle that $(r + y)^2 + (x/2)^2 = x^2$ or $(r + y)^2 = x^2 - x^2/4 = 3x^2/4$. Substituting $x^2/4 = r^2 - y^2$ into $(r + y)^2 = 3(x^2/4)$ gives $(r + y)^2 = 3(r^2 - y^2) = 3(r - y)(r + y)$ or r + y = 3(r - y) or 4y = 2r or y = r/2. Since (from the red triangle) $y^2 + (x/2)^2 = r^2$ then we have $(r/2)^2 + (x/2)^2 = r^2$ or $r^2/4 + x^2/4 = r^2$ or $r^2 + x^2 = 4r^2$ or $x^2 = 3r^2$ or $r^2 = x^2/3$ or (since r and x are positive) $r = x/\sqrt{3}$.

Page 110 Number 16 (continued)

Solution. We introduce the two right triangles in the figure. So by the Pythagorean Theorem we have for the red triangle that $y^2 + (x/2)^2 = r^2$ or $x^2/4 = r^2 - y^2$, and for the blue triangle that $(r + y)^2 + (x/2)^2 = x^2$ or $(r + y)^2 = x^2 - x^2/4 = 3x^2/4$. Substituting $x^2/4 = r^2 - y^2$ into $(r+y)^2 = 3(x^2/4)$ gives $(r+y)^2 = 3(r^2-y^2) = 3(r-y)(r+y)$ or r + y = 3(r - y) or 4y = 2r or y = r/2. Since (from the red triangle) $y^{2} + (x/2)^{2} = r^{2}$ then we have $(r/2)^{2} + (x/2)^{2} = r^{2}$ or $r^{2}/4 + x^{2}/4 = r^{2}$ or $r^2 + x^2 = 4r^2$ or $x^2 = 3r^2$ or $r^2 = x^2/3$ or (since r and x are positive) $r = x/\sqrt{3}$. Since the circumference C of a circle of radius r is $C = 2\pi r$, then $C = 2\pi x/\sqrt{3}$

Page 110 Number 16 (continued)

Solution. We introduce the two right triangles in the figure. So by the Pythagorean Theorem we have for the red triangle that $y^2 + (x/2)^2 = r^2$ or $x^2/4 = r^2 - y^2$, and for the blue triangle that $(r + y)^2 + (x/2)^2 = x^2$ or $(r + y)^2 = x^2 - x^2/4 = 3x^2/4$. Substituting $x^2/4 = r^2 - y^2$ into $(r+y)^2 = 3(x^2/4)$ gives $(r+y)^2 = 3(r^2-y^2) = 3(r-y)(r+y)$ or r + y = 3(r - y) or 4y = 2r or y = r/2. Since (from the red triangle) $y^{2} + (x/2)^{2} = r^{2}$ then we have $(r/2)^{2} + (x/2)^{2} = r^{2}$ or $r^{2}/4 + x^{2}/4 = r^{2}$ or $r^2 + x^2 = 4r^2$ or $x^2 = 3r^2$ or $r^2 = x^2/3$ or (since r and x are positive) $r = x/\sqrt{3}$. Since the circumference C of a circle of radius r is $C = 2\pi r$, then $C = 2\pi x/\sqrt{3}$

Page 110 Number 20. Inscribe a right circular cylinder of height h and radius r in a sphere of fixed radius R. See the illustration. Express the volume V of the cylinder as a function of h.

Solution. The triangle in the illustration has height h/2, so by the Pythagorean Theorem we have $(h/2)^2 + r^2 = R^2$. The volume of a cylinder with height h and radius r is $V = \pi r^2 h$. Since $(h/2)^2 + r^2 = R^2$ then $r^2 = R^2 - h^2/4$ and so we have $V = \pi (R^2 - h^2/4)h$.

Page 110 Number 20. Inscribe a right circular cylinder of height h and radius r in a sphere of fixed radius R. See the illustration. Express the volume V of the cylinder as a function of h.

Solution. The triangle in the illustration has height h/2, so by the Pythagorean Theorem we have $(h/2)^2 + r^2 = R^2$. The volume of a cylinder with height h and radius r is $V = \pi r^2 h$. Since $(h/2)^2 + r^2 = R^2$ then $r^2 = R^2 - h^2/4$ and so we have $V = \pi (R^2 - h^2/4)h$.

Page 110 Number 22. MetroMedia Cable is asked to provide service to a customer whose house is located 2 miles from the road along which the cable is buried. The nearest connection box for the cable is located 5 miles down the road. See the figure.

(a) If the installation cost is \$500 per mile along the road and \$700 per mile off the road, build a model that expresses the total cost c of installation as a function of the distance x (in miles) from the connection box to the point where the cable installation turns off the road. Find the domain of c = c(x). (b) Compute the cost if x = 1 mile. (c) Compute the cost if x = 3 miles.

C

Page 110 Number 22 (continued 1)

Page 110 Number 22. (a) If the installation cost is \$500 per mile along the road and \$700 per mile off the road, build a model that expresses the total cost C of installation as a function of the distance x (in miles) from the connection box to the point where the cable installation turns off the road. Find the domain of c = c(x).

Solution. (a) We let y be the distance from the house to the point where the cable installation turns off the road. We then have a right triangle with side of length y as follows:

Page 110 Number 22 (continued 1)

Page 110 Number 22. (a) If the installation cost is \$500 per mile along the road and \$700 per mile off the road, build a model that expresses the total cost C of installation as a function of the distance x (in miles) from the connection box to the point where the cable installation turns off the road. Find the domain of c = c(x).

Solution. (a) We let y be the distance from the house to the point where the cable installation turns off the road. We then have a right triangle with side of length y as follows:

By the Pythagorean Theorem we have $(2)^2 + (5-x)^2 = y^2$ or (since y is a distance and hence positive) $y = \sqrt{4 + (5-x)^2} = \sqrt{4 + (25 - 10x + x^2)} = \sqrt{29 - 10x + x^2}.$

Page 110 Number 22 (continued 1)

Page 110 Number 22. (a) If the installation cost is \$500 per mile along the road and \$700 per mile off the road, build a model that expresses the total cost C of installation as a function of the distance x (in miles) from the connection box to the point where the cable installation turns off the road. Find the domain of c = c(x).

Solution. (a) We let y be the distance from the house to the point where the cable installation turns off the road. We then have a right triangle with side of length y as follows:

By the Pythagorean Theorem we have $(2)^2 + (5 - x)^2 = y^2$ or (since y is a distance and hence positive) $y = \sqrt{4 + (5 - x)^2} = \sqrt{4 + (25 - 10x + x^2)} = \sqrt{29 - 10x + x^2}.$

Page 110 Number 22 (continued 2)

Page 110 Number 22. (b) Compute the cost if x = 1 mile. (c) Compute the cost if x = 3 miles.

Solution (continued). ... $y = \sqrt{29 - 10x + x^2}$. In terms of *x* and *y*, the cost is c = 500x + 700y. So $c(x) = 500x + 700\sqrt{29 - 10x + x^2}$.

(b) With
$$x = 1$$
 we have
 $c(1) = 500(1) + 700\sqrt{29 - 10(1) + (1)^2} = 500 + 700\sqrt{20} \approx$
3630.50 dollars.

Page 110 Number 22 (continued 2)

Page 110 Number 22. (b) Compute the cost if x = 1 mile. (c) Compute the cost if x = 3 miles.

Solution (continued). ... $y = \sqrt{29 - 10x + x^2}$. In terms of x and y, the cost is c = 500x + 700y. So $c(x) = 500x + 700\sqrt{29 - 10x + x^2}$.

(b) With
$$x = 1$$
 we have
 $c(1) = 500(1) + 700\sqrt{29 - 10(1) + (1)^2} = 500 + 700\sqrt{20} \approx$
3630.50 dollars.

(c) With x = 3 we have $c(3) = 500(3) + 700\sqrt{29 - 10(3) + (3)^2} = 1500 + 700\sqrt{8} \approx$ [3479.90 dollars].

Page 110 Number 22 (continued 2)

Page 110 Number 22. (b) Compute the cost if x = 1 mile. (c) Compute the cost if x = 3 miles.

Solution (continued). ... $y = \sqrt{29 - 10x + x^2}$. In terms of x and y, the cost is c = 500x + 700y. So $c(x) = 500x + 700\sqrt{29 - 10x + x^2}$.

(b) With
$$x = 1$$
 we have
 $c(1) = 500(1) + 700\sqrt{29 - 10(1) + (1)^2} = 500 + 700\sqrt{20} \approx$
3630.50 dollars.

(c) With x = 3 we have $c(3) = 500(3) + 700\sqrt{29 - 10(3) + (3)^2} = 1500 + 700\sqrt{8} \approx$ 3479.90 dollars.