Precalculus 1 (Algebra)

Chapter 3. Linear and Quadratic Functions

3.1. Properties of Linear Functions and Linear Models—Exercises, Examples, Proofs

Precalculus 1 (Algebra)

October 1, 2019

Page 126 Number 18(a)(b)

Page 126 Number 18(a)(b). Consider $h(x) = -\frac{2}{3}x + 4$. **(a)** Determine the slope and y-intercept h. (b) Use the slope and y-intercept to graph linear function h.

Solution. (a) Since
$$h(x) = mx + b = -\frac{2}{3}x + 4$$
, then the slope is $m = -2/3$.

(b) The y-intercept is b = 4, so the point (x, y) = (0, 4) is on the graph. Based on this point, if we take $m = \Delta y/\Delta x = -2/3$, $\Delta x = 3$, and $\Delta y = -2$, then another point on the graph of the function is $(x + \Delta x, y + \Delta y) = (0 + 3, 4 + (-2)) = (3, 2)$. This determines the graph of the linear function...

> October 1, 2019 3 / 13 Precalculus 1 (Algebra)

Page 126 Number 18(a)(b) (continued)

Page 126 Number 18(a)(b). Consider $h(x) = -\frac{2}{3}x + 4$. (a) Determine the slope and y-intercept of each function. (b) Use the slope and y-intercept to graph the linear function.

Solution (continued).

Page 126 Number 18(c)

Page 126 Number 18(c). Consider again $h(x) = -\frac{2}{3}x + 4$. Determine the average rate of change of each function.

Solution. By Theorem 3.1.A, Average Rate of Change of a Linear Function, the average rate of change of a linear function is its slope, so by part (a) the average rate of change is m = -2/3

October 1, 2019 October 1, 2019 5 / 13 Precalculus 1 (Algebra)

Page 126 Number 22. Determine whether the function values given in the table could be associated with a linear function or a nonlinear function. If it could be linear, determine the slope.

	c / \
X	f(x)
-2	1/4
-1	1/2
0	1
1	2
2	4

Solution. By Theorem 3.1.A, Average Rate of Change of a Linear Function, the average rate of change of a linear function is its slope. So if these function values lie on the graph of a linear function, the average rate of change will be same when computed for any consecutive pair of points. We get the following average rates of change: ...

Precalculus 1 (Algebra)

October 1, 2019

Page 126 Number 18(d)

Page 126 Number 18(d). Consider again $h(x) = -\frac{2}{3}x + 4$. Determine whether the linear function is increasing, decreasing, or constant.

Solution. By part (a) the slope of this linear function is m=-2/3 so by Theorem 3.1.B, Increasing, Decreasing, and Constant Linear Functions, this is a decreasing function on its domain $(-\infty,\infty)=\mathbb{R}$.

Solution (continued).

Points	Average Rate of Change
(-2,1/4), (-1,1/2)	$\Delta y/\Delta x = ((1/2) - (1/4))/((-1) - (-2)) = 1/4$
(-1,1/2), (0,1)	$\Delta y/\Delta x = ((1) - (1/2))/((0) - (-1)) = 1/2$
(0,1), (1,2)	$\Delta y/\Delta x = ((2) - (1))/((1) - (0)) = 1$
(1, 2), (2, 4)	$\Delta y/\Delta x = ((4) - (2))/((2) - (1)) = 2$

So these are not points on a linear function.

October 1, 2019 7 / 13

Page 128 Number 3

Page 128 Number 30

Page 128 Number 30. Suppose that f(x) = 3x + 5 and g(x) = -2x + 5. **(a)** Solve f(x) = 0. **(b)** Solve f(x) < 0. **(c)** Solve f(x) = g(x). **(d)** Solve $f(x) \ge g(x)$. **(e)** Graph y = f(x) and y = g(x) and label the point that represents the solution of the equation f(x) = g(x).

Precalculus 1 (Algebra)

Solution. (a) To solve f(x) = 0 we consider 3x + 5 = 0 or 3x = -5 or x = -5/3.

(b) To solve
$$f(x) < 0$$
 we consider $3x + 5 < 0$ or $3x < -5$ or $x < -5/3$.

(c) To solve
$$f(x) = g(x)$$
 we consider $3x + 5 = -2x + 5$ or $5x = 0$ or $x = 0$.

(d) So solve
$$f(x) \ge g(x)$$
 we consider $3x + 5 \ge -2x + 5$ or $5x \ge 0$ or $x \ge 0$.

Page 128 Number 30 (continued)

Page 128 Number 30. Suppose that f(x) = 3x + 5 and g(x) = -2x + 5. (e) Graph y = f(x) and y = g(x) and label the point that represents the solution of the equation f(x) = g(x).

Solution (continued). The graph of f(x) = 3x + 5 has slope 3 and y-intercept 5. The graph of g(x) = -2x + 5 has slope -2 and y-intercept 5. With this information we have:

October 1, 2019 10 / 13

Page 128 Number 38 (continued)

Page 128 Number 38. The monthly cost C, in dollars, for calls from the United States to Germany on a certain phone plan is modeled by the function C(x) = 0.26x + 5, where x is the number of minutes used. (d) What is the implied domain of C if there are 30 days in the month?

Solution (continued). (d) Since the set of x values is the number of minutes used, x must be at least 0. For a 30 day month, there are (30 days)(24 hours/day)(60 minutes/hour) = 43,200 minutes and so xcan be no more than 43,200. The implied domain is $0 \le x \le 43,200$ or, in interval notation, [0, 43,200]

Page 128 Number 38

Page 128 Number 38. The monthly cost C, in dollars, for calls from the United States to Germany on a certain phone plan is modeled by the function C(x) = 0.26x + 5, where x is the number of minutes used.

- (a) What is the cost if you talk on the phone for x = 50 minutes?
- (b) Suppose that your monthly bill is \$21.64. How many minutes did you use the phone? (c) Suppose that you budget yourself \$50 per month for the phone. What is the maximum number of minutes that you can talk?
- (d) What is the implied domain of C if there are 30 days in the month?

Solution. (a) For
$$x = 50$$
 we have $C(50) = 0.26(50) + 5 = 18$ dollars.

(b) With
$$C(x) = 21.64$$
 we solve $C(x) = 0.26x + 5 = 21.64$ or $0.26x = 16.64$ or $x = 16.64/0.26 = 64$ minutes.

(c) With
$$C(x) = 50$$
 we solve $C(x) = 0.26x + 5 = 50$ or $0.26x = 45$ or $x = 45/0.26 \approx 173$ minutes.

October 1, 2019

When

Page 129 Number 50

Page 129 Number 50. A cell phone company offers an international plan by charging \$30 for the first 80 minutes, plus \$0.50 for each minute over 80. (a) Write a linear model that relates the cost, in dollars, of talking x minutes, assuming x > 80. (b) What is the cost to talking 105 minutes? 120 minutes?

Solution. (a) Let C(x) be the cost in dollars where x is the number of minutes and assume $x \ge 80$ (so the domain is the interval $[80, \infty)$). Then C(x) = 30 + 0.50(x - 80) dollars

(b) When talking
$$x = 105$$
 minutes, we have the cost is $C(105) = 30 + 0.50((105) - 80) = 30 + 0.50(25) = 42.50$ dollars.

talking
$$x = 120$$
 minutes, the cost is

$$C(120) = 30 + 0.50((120) - 80) = 30 + 0.50(40) = 50 \text{ dollars}$$

October 1, 2019 Precalculus 1 (Algebra) October 1, 2019 Precalculus 1 (Algebra)