Precalculus 1 (Algebra)

Chapter 3. Linear and Quadratic Functions 3.3. Quadratic Functions and Their Properties—Exercises, Examples, Proofs

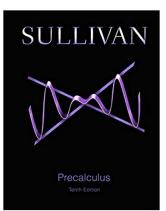


Table of contents

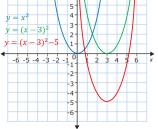
- 1 Page 145 Number 24 (modified)
- 2 Theorem 3.3.A
- 3 Page 146 Number 42
- 4 Page 146 Number 52
- 5 Page 146 Number 58
- 6 Page 146 Number 68
- Page 146 Number 80
- 8 Page 146 Number 92. Birth Rate of Unmarried Women

Page 145 number 24. Graph the function $f(x) = (x - 3)^2 - 5$ by starting with the graph of $y = x^2$ and using transformations (shifting, compressing, stretching, and/or reflecting).

Solution. First we replace x in $y = x^2$ with x - (3) which results in a horizontal shift of the graph of $y = x^2$ to the right by 3 units to give the graph of $y = (x - 3)^2$. Next, we subtract 5 from $(x - 3)^2$ which results in shifting the graph of $y = (x - 3)^2$ down by 5 units to give the graph of $f(x) = (x - 3)^2 - 5$.

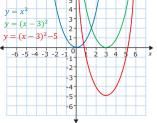
Page 145 number 24. Graph the function $f(x) = (x - 3)^2 - 5$ by starting with the graph of $y = x^2$ and using transformations (shifting, compressing, stretching, and/or reflecting).

Solution. First we replace x in $y = x^2$ with x - (3) which results in a horizontal shift of the graph of $y = x^2$ to the right by 3 units to give the graph of $y = (x - 3)^2$. Next, we subtract 5 from $(x - 3)^2$ which results in shifting the graph of $y = (x - 3)^2$ down by 5 units to give the graph of $f(x) = (x - 3)^2 - 5$.



Page 145 number 24. Graph the function $f(x) = (x - 3)^2 - 5$ by starting with the graph of $y = x^2$ and using transformations (shifting, compressing, stretching, and/or reflecting).

Solution. First we replace x in $y = x^2$ with x - (3) which results in a horizontal shift of the graph of $y = x^2$ to the right by 3 units to give the graph of $y = (x - 3)^2$. Next, we subtract 5 from $(x - 3)^2$ which results in shifting the graph of $y = (x - 3)^2$ down by 5 units to give the graph of $f(x) = (x - 3)^2 - 5$.



Theorem 3.3.A

Theorem 3.3.A. The *x*-intercepts of a quadratic function satisfy:

- (1) If the discriminant $b^2 4ac > 0$, the graph of $f(x) = ax^2 + bx + c$ has two distinct x-intercepts and so will cross the x-axis in two places.
- (2) If the discriminant $b^2 4ac = 0$, the graph of $f(x) = ax^2 + bx + c$ has one x-intercept and touches the x-axis at its vertex.
- (3) If the discriminant $b^2 4ac < 0$, the graph of $f(x) = ax^2 + bx + c$ has no x-intercept and so will not cross or touch the x-axis.

Proof. We find an *x*-intercept by setting $f(x) = ax^2 + bx + c \equiv 0$. Solving this equation gives $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ by the quadratic formula. Since we only consider real number solutions, there are no solutions when $b^2 - 4ac < 0$ (Case 3).

Theorem 3.3.A

Theorem 3.3.A. The *x*-intercepts of a quadratic function satisfy:

- (1) If the discriminant $b^2 4ac > 0$, the graph of $f(x) = ax^2 + bx + c$ has two distinct x-intercepts and so will cross the x-axis in two places.
- (2) If the discriminant $b^2 4ac = 0$, the graph of $f(x) = ax^2 + bx + c$ has one *x*-intercept and touches the *x*-axis at its vertex.
- (3) If the discriminant $b^2 4ac < 0$, the graph of $f(x) = ax^2 + bx + c$ has no x-intercept and so will not cross or touch the x-axis.

Proof. We find an *x*-intercept by setting $f(x) = ax^2 + bx + c \equiv 0$. Solving this equation gives $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ by the quadratic formula. Since we only consider real number solutions, there are no solutions when $b^2 - 4ac < 0$ (Case 3).

Theorem 3.3.A (continued)

Theorem 3.3.A. The *x*-intercepts of a quadratic function satisfy:

- (1) If the discriminant $b^2 4ac > 0$, the graph of $f(x) = ax^2 + bx + c$ has two distinct x-intercepts and so will cross the x-axis in two places.
- (2) If the discriminant $b^2 4ac = 0$, the graph of $f(x) = ax^2 + bx + c$ has one *x*-intercept and touches the *x*-axis at its vertex.
- (3) If the discriminant $b^2 4ac < 0$, the graph of $f(x) = ax^2 + bx + c$ has no x-intercept and so will not cross or touch the x-axis.

Proof (continued). When $b^2 - 4ac = 0$ there is only solution, namely $x = -\frac{b}{2a}$, and since the graph of f is a parabola with a vertical axis, the graph touches the *x*-axis at its vertex (Case 2). When $b^2 - 4ac > 0$ the quadratic formula gives two solutions (Case 1).

Theorem 3.3.A (continued)

Theorem 3.3.A. The *x*-intercepts of a quadratic function satisfy:

- (1) If the discriminant $b^2 4ac > 0$, the graph of $f(x) = ax^2 + bx + c$ has two distinct x-intercepts and so will cross the x-axis in two places.
- (2) If the discriminant $b^2 4ac = 0$, the graph of $f(x) = ax^2 + bx + c$ has one x-intercept and touches the x-axis at its vertex.
- (3) If the discriminant $b^2 4ac < 0$, the graph of $f(x) = ax^2 + bx + c$ has no x-intercept and so will not cross or touch the x-axis.

Proof (continued). When $b^2 - 4ac = 0$ there is only solution, namely $x = -\frac{b}{2a}$, and since the graph of f is a parabola with a vertical axis, the graph touches the x-axis at its vertex (Case 2). When $b^2 - 4ac > 0$ the quadratic formula gives two solutions (Case 1).

Page 146 Number 42. Consider $f(x) = 4x^2 - 2x + 1$. (a) Graph f by determining whether its graph opens up or down and by finding its vertex, axis of symmetry, *y*-intercept, and *x*-intercepts, if any. (b) Determine the domain and the range of the function. (c) Determine where the function is increasing and where it is decreasing.

Solution. (a) For $f(x) = 4x^2 - 2x + 1$ we have a = 4, b = -2, and c = 1 so, since a = 4 > 0, the graph opens up. The vertex is (-b/(2a), f(-b/(2a)) where -b/(2a) = -(-2)/(2(4)) = 1/4, so the vertex is $(1/4, f(1/4)) = (1/4, 4(1/4)^2 - 2(1/4) + 1) = (1/4, 3/4)$.

Page 146 Number 42. Consider $f(x) = 4x^2 - 2x + 1$. (a) Graph f by determining whether its graph opens up or down and by finding its vertex, axis of symmetry, *y*-intercept, and *x*-intercepts, if any. (b) Determine the domain and the range of the function. (c) Determine where the function is increasing and where it is decreasing.

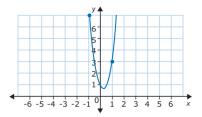
Solution. (a) For $f(x) = 4x^2 - 2x + 1$ we have a = 4, b = -2, and c = 1so, since a = 4 > 0, the graph opens up. The vertex is (-b/(2a), f(-b/(2a)) where -b/(2a) = -(-2)/(2(4)) = 1/4, so the vertex is $(1/4, f(1/4)) = (1/4, 4(1/4)^2 - 2(1/4) + 1) = (1/4, 3/4)$. The axis of symmetry is the vertical line x = -b/(2a) so the axis of symmetry is x = 1/4. Notice that the discriminant is $b^2 - 4ac = (-2)^2 - 4(4)(1) = -12 < 0$ so the graph of y = f(x) has no x-intercepts. For the y-intercept, we set x = 0 to get $f(0) = 4(0)^2 - 2(0) + 1 = 1$ and so the y-intercept is 1.

Page 146 Number 42. Consider $f(x) = 4x^2 - 2x + 1$. (a) Graph f by determining whether its graph opens up or down and by finding its vertex, axis of symmetry, *y*-intercept, and *x*-intercepts, if any. (b) Determine the domain and the range of the function. (c) Determine where the function is increasing and where it is decreasing.

Solution. (a) For $f(x) = 4x^2 - 2x + 1$ we have a = 4, b = -2, and c = 1so, since a = 4 > 0, the graph opens up. The vertex is (-b/(2a), f(-b/(2a)) where -b/(2a) = -(-2)/(2(4)) = 1/4, so the vertex is $(1/4, f(1/4)) = (1/4, 4(1/4)^2 - 2(1/4) + 1) = (1/4, 3/4)$. The axis of symmetry is the vertical line x = -b/(2a) so the axis of symmetry is x = 1/4. Notice that the discriminant is $b^2 - 4ac = (-2)^2 - 4(4)(1) = -12 < 0$ so the graph of y = f(x) has no x-intercepts. For the y-intercept, we set x = 0 to get $f(0) = 4(0)^2 - 2(0) + 1 = 1$ and so the y-intercept is 1.

Page 146 Number 42 (continued)

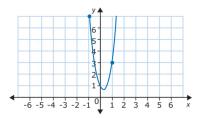
Solution (continued). Notice that $f(-1) = 4(-1)^2 - 2(-1) + 1 = 7$ and $f(1) = 4(1)^2 - 2(1) + 1 = 3$, so the points (-1, 7) and (1, 3) are on the graph. So the graph is:



(b) As with any quadratic function, f has domain $(-\infty, \infty) = \mathbb{R}$. From the graph we see that the range is $[3/4, \infty)$.

Page 146 Number 42 (continued)

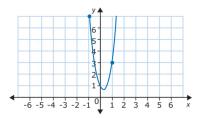
Solution (continued). Notice that $f(-1) = 4(-1)^2 - 2(-1) + 1 = 7$ and $f(1) = 4(1)^2 - 2(1) + 1 = 3$, so the points (-1, 7) and (1, 3) are on the graph. So the graph is:



(b) As with any quadratic function, f has domain $(-\infty, \infty) = \mathbb{R}$. From the graph we see that the range is $[3/4, \infty)$. (c) We see from the graph that f is decreasing on $(-\infty, 1/4)$ and increasing on $(1/4, \infty)$.

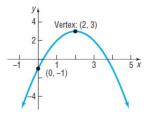
Page 146 Number 42 (continued)

Solution (continued). Notice that $f(-1) = 4(-1)^2 - 2(-1) + 1 = 7$ and $f(1) = 4(1)^2 - 2(1) + 1 = 3$, so the points (-1, 7) and (1, 3) are on the graph. So the graph is:



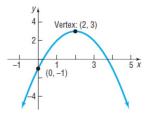
(b) As with any quadratic function, f has domain $(-\infty, \infty) = \mathbb{R}$. From the graph we see that the range is $[3/4, \infty)$. (c) We see from the graph that f is decreasing on $(-\infty, 1/4)$ and increasing on $(1/4, \infty)$.

Page 146 Number 52. Determine the quadratic function whose graph is given:



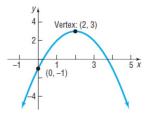
Solution. Let the quadratic function be $f(x) = ax^2 + bx + c$. The *y*-intercept is $f(0) = a(0)^2 + b(0) + c = c = -1$, so c = -1.

Page 146 Number 52. Determine the quadratic function whose graph is given:



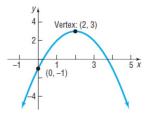
Solution. Let the quadratic function be $f(x) = ax^2 + bx + c$. The *y*-intercept is $f(0) = a(0)^2 + b(0) + c = c = -1$, so c = -1. The axis of symmetry is x = -b/(2a) = 2, so -b = 4a or b = -4a and, in terms of *a*, $f(x) = ax^2 + (-4a)x - 1$.

Page 146 Number 52. Determine the quadratic function whose graph is given:



Solution. Let the quadratic function be $f(x) = ax^2 + bx + c$. The *y*-intercept is $f(0) = a(0)^2 + b(0) + c = c = -1$, so c = -1. The axis of symmetry is x = -b/(2a) = 2, so -b = 4a or b = -4a and, in terms of *a*, $f(x) = ax^2 + (-4a)x - 1$. Since f(2) = 3, we must have $f(2) = a(2)^2 - 4a(2) - 1 = 4a - 8a - 1 = -4a - 1 = 3$ or a = -1, from which b = -4(-1) = 4. Therefore, $f(x) = -x^2 + 4x - 1$.

Page 146 Number 52. Determine the quadratic function whose graph is given:



Solution. Let the quadratic function be $f(x) = ax^2 + bx + c$. The *y*-intercept is $f(0) = a(0)^2 + b(0) + c = c = -1$, so c = -1. The axis of symmetry is x = -b/(2a) = 2, so -b = 4a or b = -4a and, in terms of *a*, $f(x) = ax^2 + (-4a)x - 1$. Since f(2) = 3, we must have $f(2) = a(2)^2 - 4a(2) - 1 = 4a - 8a - 1 = -4a - 1 = 3$ or a = -1, from which b = -4(-1) = 4. Therefore, $f(x) = -x^2 + 4x - 1$.

Page 146 Number 58. Determine, without graphing, whether the quadratic function $f(x) = 4x^2 - 8x + 3$ has a maximum or a minimum value, and then find the value.

Solution. Let the quadratic function be $f(x) = ax^2 + bx + c$. Since a = 4 > 0 then the graph of y = f(x) opens up and f has an absolute minimum at its vertex.

Page 146 Number 58. Determine, without graphing, whether the quadratic function $f(x) = 4x^2 - 8x + 3$ has a maximum or a minimum value, and then find the value.

Solution. Let the quadratic function be $f(x) = ax^2 + bx + c$. Since a = 4 > 0 then the graph of y = f(x) opens up and f has an absolute minimum at its vertex. The vertex has x-coordinate -b/(2a) = -(-8)/(2(4)) = 1. So the absolute minimum of f is $f(1) = 4(1)^2 - 8(1) + 3 = -1$.

Page 146 Number 58. Determine, without graphing, whether the quadratic function $f(x) = 4x^2 - 8x + 3$ has a maximum or a minimum value, and then find the value.

Solution. Let the quadratic function be $f(x) = ax^2 + bx + c$. Since a = 4 > 0 then the graph of y = f(x) opens up and f has an absolute minimum at its vertex. The vertex has x-coordinate -b/(2a) = -(-8)/(2(4)) = 1. So the absolute minimum of f is $f(1) = 4(1)^2 - 8(1) + 3 = -1$.

Page 146 Number 68. Consider $h(x) = -3(x+1)^2 + 4$. (a) Graph *h*. (b) Determine the domain and the range of *h*. (c) Determine where *h* is increasing and where it is decreasing.

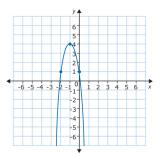
Solution. (a) Since *h* is in the form $h(x) = a(x - h)^2 + k$ where a = -3, h = -1, and k = 4 then the vertex of the graph is (h, k) = (-1, 4) and the graph opens down since a = -3 < 0 (see Note 3.3.A). The axis of symmetry is the vertical line x = -1 through the vertex. The *y*-intercept is $h(0) = -3((0) + 1)^2 + 4 = 1$. Also, $h(-2) = -3((-2) + 1)^2 + 4 = 1$. So the graph is:

Page 146 Number 68. Consider $h(x) = -3(x+1)^2 + 4$. (a) Graph *h*. (b) Determine the domain and the range of *h*. (c) Determine where *h* is increasing and where it is decreasing.

Solution. (a) Since *h* is in the form $h(x) = a(x - h)^2 + k$ where a = -3, h = -1, and k = 4 then the vertex of the graph is (h, k) = (-1, 4) and the graph opens down since a = -3 < 0 (see Note 3.3.A). The axis of symmetry is the vertical line x = -1 through the vertex. The *y*-intercept is $h(0) = -3((0) + 1)^2 + 4 = 1$. Also, $h(-2) = -3((-2) + 1)^2 + 4 = 1$. So the graph is:

Page 146 Number 68 (continued)

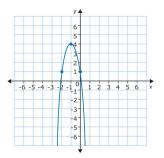
Solution (continued).

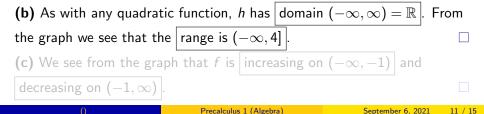


(b) As with any quadratic function, h has domain $(-\infty, \infty) = \mathbb{R}$. From the graph we see that the range is $(-\infty, 4]$.

Page 146 Number 68 (continued)

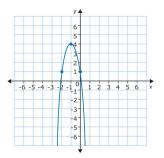
Solution (continued).





Page 146 Number 68 (continued)

Solution (continued).



(b) As with any quadratic function, h has domain $(-\infty, \infty) = \mathbb{R}$. From the graph we see that the range is $(-\infty, 4]$. (c) We see from the graph that f is increasing on $(-\infty, -1)$ and decreasing on $(-1, \infty)$.

Page 146 Number 80. (a) Find a quadratic function whose x-intercepts are -5 and 3 with a = 1; a = 2; a = -2; a = 5. (b) How does the value of a affect the intercepts? (c) How does the value of a affect the axis of symmetry? (d) How does the value of a affect the vertex? (e) Compare the x-coordinate of the vertex with the midpoint of the x-intercepts. What might you conclude?

Solution. (a) Since the *x*-intercepts are where y = f(x) = 0, then with -5 and 3 as *x*-intercepts we must have x - (-5) = x + 5 and x - 3 as factors of *f*. So *f* is of the form $f(x) = a(x+5)(x-3) = a(x^2+2x-15) = ax^2+2ax-15a = f_a(x)$.

Page 146 Number 80. (a) Find a quadratic function whose x-intercepts are -5 and 3 with a = 1; a = 2; a = -2; a = 5. **(b)** How does the value of a affect the intercepts? **(c)** How does the value of a affect the axis of symmetry? **(d)** How does the value of a affect the vertex? **(e)** Compare the x-coordinate of the vertex with the midpoint of the x-intercepts. What might you conclude?

Solution. (a) Since the x-intercepts are where y = f(x) = 0, then with -5 and 3 as x-intercepts we must have x - (-5) = x + 5 and x - 3 as factors of f. So f is of the form $f(x) = a(x+5)(x-3) = a(x^2 + 2x - 15) = ax^2 + 2ax - 15a = f_a(x)$. With a = 1 we have $f_1(x) = x^2 + 2x - 15$, with a = 2 we have $f_2(x) = 2x^2 + 4x - 30$, with a = -2 we have $f_{-2}(x) = -2x^2 - 4x + 30$, and with a = 5 we have $f_5(x) = 5x^2 + 10x - 75$.

Page 146 Number 80. (a) Find a quadratic function whose x-intercepts are -5 and 3 with a = 1; a = 2; a = -2; a = 5. **(b)** How does the value of a affect the intercepts? **(c)** How does the value of a affect the axis of symmetry? **(d)** How does the value of a affect the vertex? **(e)** Compare the x-coordinate of the vertex with the midpoint of the x-intercepts. What might you conclude?

Solution. (a) Since the x-intercepts are where y = f(x) = 0, then with -5 and 3 as x-intercepts we must have x - (-5) = x + 5 and x - 3 as factors of f. So f is of the form $f(x) = a(x+5)(x-3) = a(x^2 + 2x - 15) = ax^2 + 2ax - 15a = f_a(x)$. With a = 1 we have $f_1(x) = x^2 + 2x - 15$, with a = 2 we have $f_2(x) = 2x^2 + 4x - 30$, with a = -2 we have $f_{-2}(x) = -2x^2 - 4x + 30$, and with a = 5 we have $f_5(x) = 5x^2 + 10x - 75$.

Solution (continued). (b) If the x intercepts are -5 and 3 then f is of the form $f(x) = a(x+5)(x-3) = ax^2 + 2ax - 15a$ and a does not affect the x-intercepts. (c) The axis of symmetry is the vertical line x = -b/(2a) and for

 $f(x) = ax^2 + 2ax - 15a$ we have b = 2a so that for any value of a the axis of symmetry is x = -(2a)/(2a) = -1 and so a

does not affect the axis of symmetry .

Solution (continued). (b) If the x intercepts are -5 and 3 then f is of the form $f(x) = a(x+5)(x-3) = ax^2 + 2ax - 15a$ and a does not affect the x-intercepts. (c) The axis of symmetry is the vertical line x = -b/(2a) and for $f(x) = ax^2 + 2ax - 15a$ we have b = 2a so that for any value of a the axis of symmetry is x = -(2a)/(2a) = -1 and so a does not affect the axis of symmetry . (d) The vertex has coordinates (-b/(2a), f(-b/(2a))) and from part (c), -b/(2a) = -1. We have $f(-1) = a(-1)^2 + 2a(-1) - 15(a) = -16a$ so the vertex is (-1, -16a). So

as *a* increases, the *y*-coordinate of the vertex decreases

Solution (continued). (b) If the x intercepts are -5 and 3 then f is of the form $f(x) = a(x+5)(x-3) = ax^2 + 2ax - 15a$ and a does not affect the x-intercepts (c) The axis of symmetry is the vertical line x = -b/(2a) and for $f(x) = ax^2 + 2ax - 15a$ we have b = 2a so that for any value of a the axis of symmetry is x = -(2a)/(2a) = -1 and so a does not affect the axis of symmetry . (d) The vertex has coordinates (-b/(2a), f(-b/(2a))) and from part (c), -b/(2a) = -1. We have $f(-1) = a(-1)^2 + 2a(-1) - 15(a) = -16a$ so the vertex is (-1, -16a). So as a increases, the y-coordinate of the vertex decreases. (e) The x-coordinate of the vertex is -1 and the midpoint of the intercepts is ((-5) + (3))/2 = -2/2 = -1. So these are equal. We conclude that the x-coordinate of the vertex and the midpoint of the x-intercepts | are, in general, equal |.

Solution (continued). (b) If the x intercepts are -5 and 3 then f is of the form $f(x) = a(x+5)(x-3) = ax^2 + 2ax - 15a$ and a does not affect the x-intercepts (c) The axis of symmetry is the vertical line x = -b/(2a) and for $f(x) = ax^2 + 2ax - 15a$ we have b = 2a so that for any value of a the axis of symmetry is x = -(2a)/(2a) = -1 and so a does not affect the axis of symmetry . (d) The vertex has coordinates (-b/(2a), f(-b/(2a))) and from part (c), -b/(2a) = -1. We have $f(-1) = a(-1)^2 + 2a(-1) - 15(a) = -16a$ so the vertex is (-1, -16a). So as a increases, the y-coordinate of the vertex decreases. (e) The x-coordinate of the vertex is -1 and the midpoint of the intercepts is ((-5) + (3))/2 = -2/2 = -1. So these are equal. We conclude that the x-coordinate of the vertex and the midpoint of the x-intercepts are, in general, equal |.

Page 146 Number 92. In the United States, the birth rate *B* of unmarried women (births per 1000 unmarried women) for women whose age is *a* is modeled by the function $B(a) = -0.30a^2 + 16.26a - 158.90$. (a) What is the age of unmarried women with the highest birth rate? (b) What is the highest birth rate of unmarried women? (c) Evaluate and interpret B(40).

Solution. (a) First, function *B* is a quadratic function. Since the coefficient of the square of the variable is -0.30 (negative), then the graph of *B* opens down and *B* has an absolute maximum at the vertex. The vertex is at (a, B(a)) where a = -(16.26)/(2(-0.30)) = 27.1, so the age of unmarried women with the highest birth rate is a = 27.1 years.

Page 146 Number 92. In the United States, the birth rate *B* of unmarried women (births per 1000 unmarried women) for women whose age is *a* is modeled by the function $B(a) = -0.30a^2 + 16.26a - 158.90$. (a) What is the age of unmarried women with the highest birth rate? (b) What is the highest birth rate of unmarried women? (c) Evaluate and interpret B(40).

Solution. (a) First, function *B* is a quadratic function. Since the coefficient of the square of the variable is -0.30 (negative), then the graph of *B* opens down and *B* has an absolute maximum at the vertex. The vertex is at (a, B(a)) where a = -(16.26)/(2(-0.30)) = 27.1, so the age of unmarried women with the highest birth rate is a = 27.1 years.

(b) The highest birth rate is the function value at the vertex and so is $B(27.1) = -0.30(27.1)^2 + 16.26(27.1) - 158.90 =$

61.423 births per 1000 unmarried women .

Page 146 Number 92. In the United States, the birth rate *B* of unmarried women (births per 1000 unmarried women) for women whose age is *a* is modeled by the function $B(a) = -0.30a^2 + 16.26a - 158.90$. (a) What is the age of unmarried women with the highest birth rate? (b) What is the highest birth rate of unmarried women? (c) Evaluate and interpret B(40).

Solution. (a) First, function *B* is a quadratic function. Since the coefficient of the square of the variable is -0.30 (negative), then the graph of *B* opens down and *B* has an absolute maximum at the vertex. The vertex is at (a, B(a)) where a = -(16.26)/(2(-0.30)) = 27.1, so the age of unmarried women with the highest birth rate is a = 27.1 years.

(b) The highest birth rate is the function value at the vertex and so is $B(27.1) = -0.30(27.1)^2 + 16.26(27.1) - 158.90 =$ 61.423 births per 1000 unmarried women.

Page 146 Number 92. In the United States, the birth rate *B* of unmarried women (births per 1000 unmarried women) for women whose age is modeled by the function $B(a) = -0.30a^2 + 16.26a - 158.90$. (a) What is the age of unmarried women with the highest birth rate? (b) What is the highest birth rate of unmarried women? (c) Evaluate and interpret B(40).

Solution (continued). (c) We have $B(40) = -0.30(40)^2 + 16.26(40) - 158.90 =$ 11.5 births per 1000 unmarried women. We interpret this as: Of 1000 unmarried women of age 40 in the United States, 11.5 will give birth (in a given year on average).