Precalculus 1 (Algebra)

Chapter 4. Polynomial and Rational Functions

4.4. Polynomial and Rational Inequalities-Exercises, Examples, Proofs

- Page 218 Number 7
- 2 Page 219 Number 26
- 3 Page 219 Number 48
- Page 219 Number 64
- 5 Page 220 Number 76. Average Cost

Page 218 Number 7. Use the graph of the function f to solve the inequalities (a) f(x) > 0 and (b) $f(x) \le 0$.

Solution. (a) We have f(x) > 0 when the graph of y = f(x) is strictly above the x-axis (that is, when the y-coordinate of points is greater than 0). So f(x) > 0 for x in $(-\infty, -1) \cup (0, 1)$.

Page 218 Number 7. Use the graph of the function f to solve the inequalities (a) f(x) > 0 and (b) $f(x) \le 0$.

Solution. (a) We have f(x) > 0 when the graph of y = f(x) is strictly above the x-axis (that is, when the y-coordinate of points is greater than 0). So f(x) > 0 for x in $(-\infty, -1) \cup (0, 1)$.

Page 218 Number 7 (continued)

Page 218 Number 7. Use the graph of the function f to solve the inequalities (a) f(x) > 0 and (b) $f(x) \le 0$.

Solution (continued). (b) We have $f(x) \le 0$ when the graph of y = f(x) is below or on the *x*-axis (that is, when the *y*-coordinate of points is less than or equal to 0). So $f(x) \le 0$ for x in $(-1, 0] \cup (1, \infty)$.

Page 218 Number 7 (continued)

Page 218 Number 7. Use the graph of the function f to solve the inequalities (a) f(x) > 0 and (b) $f(x) \le 0$.

Solution (continued). (b) We have $f(x) \le 0$ when the graph of y = f(x) is below or on the x-axis (that is, when the y-coordinate of points is less than or equal to 0). So $f(x) \le 0$ for x in $(-1,0] \cup (1,\infty)$.

Page 219 Number 26. Solve the inequality $(x + 1)(x + 2)(x + 3) \le 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take f(x) = (x+1)(x+2)(x+3).

Page 219 Number 26. Solve the inequality $(x + 1)(x + 2)(x + 3) \le 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take f(x) = (x+1)(x+2)(x+3). For Step 2, we see that the left side of the inequality, f(x), is already factored and the real zeros of f(x) = (x+1)(x+2)(x+3) are x = -3, x = -2, and x = -1.

Page 219 Number 26. Solve the inequality $(x + 1)(x + 2)(x + 3) \le 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take f(x) = (x+1)(x+2)(x+3). For Step 2, we see that the left side of the inequality, f(x), is already factored and the real zeros of f(x) = (x+1)(x+2)(x+3) are x = -3, x = -2, and x = -1. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing the zeros of f to get: $(-\infty, -3)$, (-3, -2), (-2, -1), $(-1, \infty)$.

Page 219 Number 26. Solve the inequality $(x + 1)(x + 2)(x + 3) \le 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take f(x) = (x+1)(x+2)(x+3). For Step 2, we see that the left side of the inequality, f(x), is already factored and the real zeros of f(x) = (x+1)(x+2)(x+3) are x = -3, x = -2, and x = -1. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing the zeros of f to get: $(-\infty, -3)$, (-3, -2), (-2, -1), $(-1, \infty)$. For Step 4, consider

Interval	$(-\infty, -3)$	(-3, -2)	(-2, -1)	$(-1,\infty)$
Test Value c	-4	-5/2	-3/2	0
Value of $f(c)$	(-3)(-2)(-1)	(-3/2)(-1/2)(1/2)	(-1/2)(1/2)(3/2)	(1)(2)(3)
Conclusion	f negative	f positive	f negative	f positive

Page 219 Number 26. Solve the inequality $(x + 1)(x + 2)(x + 3) \le 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take f(x) = (x+1)(x+2)(x+3). For Step 2, we see that the left side of the inequality, f(x), is already factored and the real zeros of f(x) = (x+1)(x+2)(x+3) are x = -3, x = -2, and x = -1. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing the zeros of f to get: $(-\infty, -3)$, (-3, -2), (-2, -1), $(-1, \infty)$. For Step 4, consider

Interval	$(-\infty, -3)$	(-3, -2)	(-2, -1)	$(-1,\infty)$
Test Value c	-4	-5/2	-3/2	0
Value of $f(c)$	(-3)(-2)(-1)	(-3/2)(-1/2)(1/2)	(-1/2)(1/2)(3/2)	(1)(2)(3)
Conclusion	f negative	f positive	f negative	f positive

So $f(x) \le 0$ for $|x \text{ in } (-\infty, -3] \cup [-2, -1]|$.

Page 219 Number 26. Solve the inequality $(x + 1)(x + 2)(x + 3) \le 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take f(x) = (x+1)(x+2)(x+3). For Step 2, we see that the left side of the inequality, f(x), is already factored and the real zeros of f(x) = (x+1)(x+2)(x+3) are x = -3, x = -2, and x = -1. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing the zeros of f to get: $(-\infty, -3)$, (-3, -2), (-2, -1), $(-1, \infty)$. For Step 4, consider

Interval	$(-\infty, -3)$	(-3, -2)	(-2, -1)	$(-1,\infty)$
Test Value c	-4	-5/2	-3/2	0
Value of $f(c)$	(-3)(-2)(-1)	(-3/2)(-1/2)(1/2)	(-1/2)(1/2)(3/2)	(1)(2)(3)
Conclusion	f negative	f positive	f negative	f positive

So $f(x) \le 0$ for x in $(-\infty, -3] \cup [-2, -1]$.

Page 219 Number 48. Solve the inequality $\frac{(2-x)^3(3x-2)}{x^3+1} < 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = \frac{(2-x)^3(3x-2)}{x^3+1}$.

Page 219 Number 48. Solve the inequality $\frac{(2-x)^3(3x-2)}{x^3+1} < 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = \frac{(2-x)^3(3x-2)}{x^3+1}$.

For Step 2, we see that the left side of the inequality, f(x), is already factored and the real zeros of f are x = 2 and x = 2/3, and the only zero of the denominator is $x = \sqrt[3]{-1} = -1$.

Page 219 Number 48. Solve the inequality $\frac{(2-x)^3(3x-2)}{x^3+1} < 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = \frac{(2-x)^3(3x-2)}{x^3+1}$. For Step 2, we see that the left side of the inequality, f(x), is already factored and the real zeros of f are x = 2 and x = 2/3, and the only zero of the denominator is $x = \sqrt[3]{-1} = -1$. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing these zeros to get: $(-\infty, -1), (-1, 2/3), (2/3, 2), (2, \infty)$.

Page 219 Number 48. Solve the inequality $\frac{(2-x)^3(3x-2)}{x^3+1} < 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = \frac{(2-x)^3(3x-2)}{x^3+1}$. For Step 2, we see that the left side of the inequality, f(x), is already factored and the real zeros of f are x = 2 and x = 2/3, and the only zero of the denominator is $x = \sqrt[3]{-1} = -1$. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing these zeros to get:

 $(-\infty, -1)$, (-1, 2/3), (2/3, 2), $(2, \infty)$. For Step 4, consider

Interval	$(-\infty, -1)$	(-1, 2/3)	(2/3,2)	$(2,\infty)$
Test Value c	-2	0	1	3
Value of $f(c)$	$(4)^3(-8)/(-7)$	$(2)^3(-2)/(1)$	$(1)^3(1)/(2)$	$(-1)^3(7)/(28)$
Conclusion	f positive	f negative	f positive	f negative

Page 219 Number 48. Solve the inequality $\frac{(2-x)^3(3x-2)}{x^3+1} < 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = \frac{(2-x)^3(3x-2)}{x^3+1}$. For Step 2, we see that the left side of the inequality, f(x), is already

factored and the real zeros of f are x = 2 and x = 2/3, and the only zero of the denominator is $x = \sqrt[3]{-1} = -1$. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing these zeros to get: $(-\infty, -1)$, (-1, 2/3), (2/3, 2), $(2, \infty)$. For Step 4, consider

Interval	$(-\infty, -1)$	(-1,2/3)	(2/3,2)	$(2,\infty)$
Test Value c	-2	0	1	3
Value of $f(c)$	$(4)^3(-8)/(-7)$	$(2)^{3}(-2)/(1)$	$(1)^{3}(1)/(2)$	$(-1)^{3}(7)/(28)$
Conclusion	f positive	f negative	f positive	f negative

So f(x) < 0 for $|x \text{ in } (-1, 2/3) \cup (2, \infty)|$.

Page 219 Number 48. Solve the inequality $\frac{(2-x)^3(3x-2)}{x^3+1} < 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = \frac{(2-x)^3(3x-2)}{x^3+1}$. For Step 2, we see that the left side of the inequality, f(x), is already

factored and the real zeros of f are x = 2 and x = 2/3, and the only zero of the denominator is $x = \sqrt[3]{-1} = -1$. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing these zeros to get: $(-\infty, -1)$, (-1, 2/3), (2/3, 2), $(2, \infty)$. For Step 4, consider

Interval	$(-\infty, -1)$	(-1,2/3)	(2/3,2)	$(2,\infty)$
Test Value c	-2	0	1	3
Value of $f(c)$	$(4)^3(-8)/(-7)$	$(2)^{3}(-2)/(1)$	$(1)^{3}(1)/(2)$	$(-1)^{3}(7)/(28)$
Conclusion	f positive	f negative	f positive	f negative

So f(x) < 0 for x in $(-1, 2/3) \cup (2, \infty)$.

Page 219 Number 64. Consider $f(x) = \frac{x^3 - 6x^2 + 9x - 4}{x^2 + x - 20}$. (a) Graph f, and (b) solve $f(x) \ge 0$. HINT: $x^3 - 6x^2 + 9x - 4 = (x - 4)(x - 1)^2$

Solution. (a) We follow the 7 steps for graphing a rational function introduced in Section 4.3. For Step 1, we factor the numerator and denominator of f. The numerator is factored using the hint and the denominator easily factors as $x^2 + x - 20 = (x - 4)(x + 5)$. So, in fact, $f(x) = \frac{(x - 4)(x - 1)^2}{(x - 4)(x + 5)}$. We see that the domain of f is all real numbers except x = -5 and x = 4; that is, the domain is $(-\infty, -5) \cup (-5, 4) \cup (4, \infty)$.

Page 219 Number 64. Consider $f(x) = \frac{x^3 - 6x^2 + 9x - 4}{x^2 + x - 20}$. (a) Graph f, and (b) solve $f(x) \ge 0$. HINT: $x^3 - 6x^2 + 9x - 4 = (x - 4)(x - 1)^2$

Solution. (a) We follow the 7 steps for graphing a rational function introduced in Section 4.3. For Step 1, we factor the numerator and denominator of f. The numerator is factored using the hint and the denominator easily factors as $x^2 + x - 20 = (x - 4)(x + 5)$. So, in fact, $f(x) = \frac{(x-4)(x-1)^2}{(x-4)(x+5)}$. We see that the domain of f is all real numbers except x = -5 and x = 4; that is, the domain is $(-\infty, -5) \cup (-5, 4) \cup (4, \infty)$. For Step 2, we write f in lowest terms, but carefully preserve the information about the domain. So we have $f(x) = \frac{(x-4)(x-1)^2}{(x-4)(x+5)} = \frac{(x-1)^2}{x+5}$ for $x \neq 4$.

Page 219 Number 64. Consider $f(x) = \frac{x^3 - 6x^2 + 9x - 4}{x^2 + x - 20}$. (a) Graph f, and (b) solve $f(x) \ge 0$. HINT: $x^3 - 6x^2 + 9x - 4 = (x - 4)(x - 1)^2$

Solution. (a) We follow the 7 steps for graphing a rational function introduced in Section 4.3. For Step 1, we factor the numerator and denominator of f. The numerator is factored using the hint and the denominator easily factors as $x^2 + x - 20 = (x - 4)(x + 5)$. So, in fact, $f(x) = \frac{(x-4)(x-1)^2}{(x-4)(x+5)}$. We see that the domain of f is all real numbers except x = -5 and x = 4; that is, the domain is $(-\infty, -5) \cup (-5, 4) \cup (4, \infty)$. For Step 2, we write f in lowest terms, but carefully preserve the information about the domain. So we have $f(x) = \frac{(x-4)(x-1)^2}{(x-4)(x+5)} = \frac{(x-1)^2}{x+5}$ for $x \neq 4$.

Page 219 Number 64 (continued 1)

Solution (continued). For Step 3, we find the *x*-intercepts by solving f(x) = 0 for x in the domain of f. So we set the numerator of f equal to 0, $(x-4)(x-1)^2 = 0$, and we see that this implies that x = 1 and x = 4; however, 4 is not in the domain of f so the only x-intercept is x = 1. Notice that x = 1 is a zero of f of multiplicity 2, so the graph touches the x - axis at x = 1. For the y-intercept, we set x = 0 to get $f(0) = \frac{(-4)(-1)^2}{(-4)(5)} = \frac{1}{5}$. For Step 4, to find vertical asymptotes we set the denominator of f (in lowest terms) equal to 0 to get x + 5 = 0 or x = -5. So there is a vertical asymptote of x = -5 (notice that when f is NOT in lowest terms, the denominator is also 0 at x = 4, but this does not yield a vertical asymptote at x = 4; see Theorem 2.2.A).

Page 219 Number 64 (continued 1)

Solution (continued). For Step 3, we find the *x*-intercepts by solving f(x) = 0 for x in the domain of f. So we set the numerator of f equal to 0, $(x-4)(x-1)^2 = 0$, and we see that this implies that x = 1 and x = 4; however, 4 is not in the domain of f so the only x-intercept is x = 1. Notice that x = 1 is a zero of f of multiplicity 2, so the graph touches the x - axis at x = 1. For the y-intercept, we set x = 0 to get $f(0) = \frac{(-4)(-1)^2}{(-4)(5)} = \frac{1}{5}$. For Step 4, to find vertical asymptotes we set the denominator of f (in lowest terms) equal to 0 to get x + 5 = 0 or x = -5. So there is a vertical asymptote of x = -5 (notice that when f is NOT in lowest terms, the denominator is also 0 at x = 4, but this does not yield a vertical asymptote at x = 4; see Theorem 2.2.A). In Step 5, we find horizontal or oblique asymptotes. Notice that the denominator of f is degree m = 2 and the numerator is of degree n = 3 = m + 1, so f has an oblique asymptote y = ax + b which we find by long division (see Section 4.2); we can deal with the version of f in lowest terms:

Page 219 Number 64 (continued 1)

Solution (continued). For Step 3, we find the *x*-intercepts by solving f(x) = 0 for x in the domain of f. So we set the numerator of f equal to 0, $(x-4)(x-1)^2 = 0$, and we see that this implies that x = 1 and x = 4; however, 4 is not in the domain of f so the only x-intercept is x = 1. Notice that x = 1 is a zero of f of multiplicity 2, so the graph touches the x - axis at x = 1. For the y-intercept, we set x = 0 to get $f(0) = \frac{(-4)(-1)^2}{(-4)(5)} = \frac{1}{5}$. For Step 4, to find vertical asymptotes we set the denominator of f (in lowest terms) equal to 0 to get x + 5 = 0 or x = -5. So there is a vertical asymptote of x = -5 (notice that when f is NOT in lowest terms, the denominator is also 0 at x = 4, but this does not yield a vertical asymptote at x = 4; see Theorem 2.2.A). In Step 5, we find horizontal or oblique asymptotes. Notice that the denominator of f is degree m = 2 and the numerator is of degree n = 3 = m + 1, so f has an oblique asymptote y = ax + b which we find by long division (see Section 4.2); we can deal with the version of f in lowest terms:

Page 219 Number 64 (continued 2)

So the oblique asymptote is y = x - 7. For Step 6, we have that f is 0 at x = 1 and is not defined at x = -5 and x = 4, so we divide the x-axis into intervals: $(-\infty, -5)$, (-5, 1), (1, 4), $(4, \infty)$. Consider (we use the reduced version of f):

Interval	$(-\infty, -5)$	(-5, 1)	(1, 4)	$(4,\infty)$
Test Value c	-6	0	2	5
Value of $f(c)$	$(-7)^2/(-1)$	$(-1)^2/(5)$	$(1)^2/(7)$	$(4)^2/(10)$
Conclusion	f negative	f positive	f positive	f positive

Page 219 Number 64 (continued 2)

So the oblique asymptote is y = x - 7. For Step 6, we have that f is 0 at x = 1 and is not defined at x = -5 and x = 4, so we divide the x-axis into intervals: $(-\infty, -5)$, (-5, 1), (1, 4), $(4, \infty)$. Consider (we use the reduced version of f):

Interval	$(-\infty, -5)$	(-5, 1)	(1, 4)	$(4,\infty)$
Test Value c	-6	0	2	5
Value of $f(c)$	$(-7)^2/(-1)$	$(-1)^2/(5)$	$(1)^2/(7)$	$(4)^2/(10)$
Conclusion	f negative	f positive	f positive	f positive

So f is below the x-axis on $(-\infty, -5)$ and f is above the x-axis on $(-5, 1) \cup (1, 4) \cup (4, \infty)$.

Page 219 Number 64 (continued 2)

So the oblique asymptote is y = x - 7. For Step 6, we have that f is 0 at x = 1 and is not defined at x = -5 and x = 4, so we divide the x-axis into intervals: $(-\infty, -5)$, (-5, 1), (1, 4), $(4, \infty)$. Consider (we use the reduced version of f):

Interval	$(-\infty, -5)$	(-5, 1)	(1, 4)	$(4,\infty)$
Test Value c	-6	0	2	5
Value of $f(c)$	$(-7)^2/(-1)$	$(-1)^2/(5)$	$(1)^2/(7)$	$(4)^2/(10)$
Conclusion	f negative	f positive	f positive	f positive

So f is below the x-axis on $(-\infty, -5)$ and f is above the x-axis on $(-5, 1) \cup (1, 4) \cup (4, \infty)$.

Page 219 Number 64 (continued 3)

Solution (continued). Notice that since f is negative on $(-\infty, -5)$ and f has a vertical asymptote at x = -5, then (in the notation of Page 193 Figure 29), $\lim_{x\to -5^-} f(x) = -\infty$. Since f is positive on (-5, 1) and f has a vertical asymptote at x = -5, then $\lim_{x\to -5^+} f(x) = \infty$ (this gives the behavior of the graph of f on either side of the vertical asymptote, completing Step 4).

Before graphing, we notice that $f(x) = \frac{(x-4)(x-1)^2}{(x-4)(x+5)} = \frac{(x-1)^2}{x+5}$ for $x \neq 4$. Each of the properties above are satisfied by the function $g(x) = \frac{(x-1)^2}{x+5}$, except for the fact that the domain of g includes x = 4 (at which the value is $g(4) = ((4) - 1)^2/((4) + 5) = 9/9 = 1)$ and the domain of f does not. The effect of this is that the graph of f and g are the same, except at the point (4,1) where g includes this point and f does not. So the graph of f is the same as the graph of g, except that a "hole" is punched in the graph of f at (4, 1). All this information combines to give the following graph.

()

Page 219 Number 64 (continued 3)

Solution (continued). Notice that since f is negative on $(-\infty, -5)$ and f has a vertical asymptote at x = -5, then (in the notation of Page 193 Figure 29), $\lim_{x\to -5^-} f(x) = -\infty$. Since f is positive on (-5, 1) and f has a vertical asymptote at x = -5, then $\lim_{x\to -5^+} f(x) = \infty$ (this gives the behavior of the graph of f on either side of the vertical asymptote, completing Step 4).

Before graphing, we notice that $f(x) = \frac{(x-4)(x-1)^2}{(x-4)(x+5)} = \frac{(x-1)^2}{x+5}$ for $x \neq 4$. Each of the properties above are satisfied by the function $g(x) = \frac{(x-1)^2}{x+5}$, except for the fact that the domain of g includes x = 4 (at which the value is $g(4) = ((4) - 1)^2/((4) + 5) = 9/9 = 1$) and the domain of f does not. The effect of this is that the graph of f and g are the same, except at the point (4, 1) where g includes this point and f does not. So the graph of f at (4, 1). All this information combines to give the following graph.

Page 219 Number 64 (continued 4)

Solution (continued).

(b) We see from the graph that $f(x) \ge 0$ for x in $|(-5,4) \cup (4,\infty)|$.

Page 220 Number 76

Page 220 Number 76. Suppose that the government imposes a \$1000-per-day tax on the bicycle manufacturer so that the daily cost C of manufacturing x bicycles is now given by C(x) = 80x + 6000. The average daily cost \overline{C} is given by $\overline{C}(x) = (80x + 6000)/x$. How many bicycles must be produced each day for the average cost to be no more than \$100?

Solution. For the average cost \overline{C} to be no more than \$100 requires $\overline{C}(x) = (80x + 6000)/x \le 100$, so we solve this inequality algebraically by following the 4 steps. For Step 1, define $f(x) = \overline{C}(x) - 100 = (80x + 6000)/x - 100 = (6000 - 20x)/x$ so that the given inequality becomes $f(x) = (6000 - 20x)/x \le 0$.

Page 220 Number 76

Page 220 Number 76. Suppose that the government imposes a \$1000-per-day tax on the bicycle manufacturer so that the daily cost C of manufacturing x bicycles is now given by C(x) = 80x + 6000. The average daily cost \overline{C} is given by $\overline{C}(x) = (80x + 6000)/x$. How many bicycles must be produced each day for the average cost to be no more than \$100?

Solution. For the average cost \overline{C} to be no more than \$100 requires $\overline{C}(x) = (80x + 6000)/x \le 100$, so we solve this inequality algebraically by following the 4 steps. For Step 1, define $f(x) = \overline{C}(x) - 100 = (80x + 6000)/x - 100 = (6000 - 20x)/x$ so that the given inequality becomes $f(x) = (6000 - 20x)/x \le 0$. For Step 2, we see that the left side of the inequality, f(x) = (6000 - 20x)/x, is already factored and the real zero of f is x = 6000/20 = 300, and the only zero of the denominator is x = 0. However, notice that x is a number of bicycles so we must have $x \ge 0$. But we also just saw that $x \ne 0$; this means the domain of f is $(0, \infty)$.

Page 220 Number 76

Page 220 Number 76. Suppose that the government imposes a \$1000-per-day tax on the bicycle manufacturer so that the daily cost C of manufacturing x bicycles is now given by C(x) = 80x + 6000. The average daily cost \overline{C} is given by $\overline{C}(x) = (80x + 6000)/x$. How many bicycles must be produced each day for the average cost to be no more than \$100?

Solution. For the average cost \overline{C} to be no more than \$100 requires $\overline{C}(x) = (80x + 6000)/x \le 100$, so we solve this inequality algebraically by following the 4 steps. For Step 1, define $f(x) = \overline{C}(x) - 100 = (80x + 6000)/x - 100 = (6000 - 20x)/x$ so that the given inequality becomes $f(x) = (6000 - 20x)/x \le 0$. For Step 2, we see that the left side of the inequality, f(x) = (6000 - 20x)/x, is already factored and the real zero of f is x = 6000/20 = 300, and the only zero of the denominator is x = 0. However, notice that x is a number of bicycles so we must have $x \ge 0$. But we also just saw that $x \ne 0$; this means the domain of f is $(0, \infty)$.

Page 220 Number 76 (continued)

Page 220 Number 76. Suppose that the government imposes a \$1000-per-day tax on the bicycle manufacturer so that the daily cost C of manufacturing x bicycles is now given by C(x) = 80x + 6000. The average daily cost \overline{C} is given by $\overline{C}(x) = (80x + 6000)/x$. How many bicycles must be produced each day for the average cost to be no more than \$100?

Solution (continued). For Step 3, we divide the domain of f, $(0, \infty)$, into intervals by removing the points x = 0 and x = 300 to get: (0, 300), $(300, \infty)$. For Step 4, consider

Interval	(0,300)	$(300,\infty)$
Test Value c	50	301
Value of $f(c)$	(5000)/(50)	(-20)/(301)
Conclusion	f positive	f negative

Page 220 Number 76 (continued)

Page 220 Number 76. Suppose that the government imposes a \$1000-per-day tax on the bicycle manufacturer so that the daily cost C of manufacturing x bicycles is now given by C(x) = 80x + 6000. The average daily cost \overline{C} is given by $\overline{C}(x) = (80x + 6000)/x$. How many bicycles must be produced each day for the average cost to be no more than \$100?

Solution (continued). For Step 3, we divide the domain of f, $(0, \infty)$, into intervals by removing the points x = 0 and x = 300 to get: (0, 300), $(300, \infty)$. For Step 4, consider

Interval	(0, 300)	$(300,\infty)$
Test Value c	50	301
Value of $f(c)$	(5000)/(50)	(-20)/(301)
Conclusion	f positive	f negative

So $f(x) \leq 0$ (and $\overline{C}(x) \leq 100$) for x in $[300, \infty)$. So the bicycle manufacturer should produce at least 300 bicycles each day.

Page 220 Number 76 (continued)

Page 220 Number 76. Suppose that the government imposes a \$1000-per-day tax on the bicycle manufacturer so that the daily cost C of manufacturing x bicycles is now given by C(x) = 80x + 6000. The average daily cost \overline{C} is given by $\overline{C}(x) = (80x + 6000)/x$. How many bicycles must be produced each day for the average cost to be no more than \$100?

Solution (continued). For Step 3, we divide the domain of f, $(0, \infty)$, into intervals by removing the points x = 0 and x = 300 to get: (0, 300), $(300, \infty)$. For Step 4, consider

Interval	(0, 300)	$(300,\infty)$
Test Value c	50	301
Value of $f(c)$	(5000)/(50)	(-20)/(301)
Conclusion	f positive	f negative

So $f(x) \leq 0$ (and $\overline{C}(x) \leq 100$) for x in $[300, \infty)$. So the bicycle manufacturer should produce at least 300 bicycles each day.