Precalculus 1 (Algebra)

Chapter 4. Polynomial and Rational Functions

4.4. Polynomial and Rational Inequalities—Exercises, Examples, Proofs

- 1 [Page 218 Number 7](#page-2-0)
- 2 [Page 219 Number 26](#page-6-0)
- 3 [Page 219 Number 48](#page-12-0)
	- [Page 219 Number 64](#page-18-0)
- 5 [Page 220 Number 76. Average Cost](#page-30-0)

Page 218 Number 7. Use the graph of the function f to solve the inequalities (a) $f(x) > 0$ and (b) $f(x) \le 0$.

Solution. (a) We have $f(x) > 0$ when the graph of $y = f(x)$ is strictly above the x -axis (that is, when the y -coordinate of points is greater than 0). So $f(x) > 0$ for $x \in (-\infty, -1) \cup (0, 1)$.

Page 218 Number 7. Use the graph of the function f to solve the inequalities (a) $f(x) > 0$ and (b) $f(x) < 0$.

Solution. (a) We have $f(x) > 0$ when the graph of $y = f(x)$ is strictly above the x -axis (that is, when the y -coordinate of points is greater than 0). So $f(x) > 0$ for $x \in (-\infty, -1) \cup (0, 1)$

Page 218 Number 7 (continued)

Page 218 Number 7. Use the graph of the function f to solve the inequalities (a) $f(x) > 0$ and (b) $f(x) \le 0$.

Solution (continued). (b) We have $f(x) \le 0$ when the graph of $y = f(x)$ is below or on the x-axis (that is, when the y-coordinate of points is less than or equal to 0). So $f(x) \le 0$ for x in $(-1,0] \cup (1,\infty)$.

Page 218 Number 7 (continued)

Page 218 Number 7. Use the graph of the function f to solve the inequalities (a) $f(x) > 0$ and (b) $f(x) \le 0$.

Solution (continued). (b) We have $f(x) \le 0$ when the graph of $y = f(x)$ is below or on the x -axis (that is, when the y -coordinate of points is less than or equal to 0). So $f(x) \le 0$ for $x \in (-1,0] \cup (1,\infty)$.

Page 219 Number 26. Solve the inequality $(x + 1)(x + 2)(x + 3) \le 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = (x+1)(x+2)(x+3)$.

Page 219 Number 26. Solve the inequality $(x + 1)(x + 2)(x + 3) \le 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = (x+1)(x+2)(x+3)$. For Step 2, we see that the left side of the inequality, $f(x)$, is already factored and the real zeros of $f(x) = (x + 1)(x + 2)(x + 3)$ are $x = -3$, $x = -2$, and $x = -1$.

Page 219 Number 26. Solve the inequality $(x + 1)(x + 2)(x + 3) \le 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = (x+1)(x+2)(x+3)$. For Step 2, we see that the left side of the inequality, $f(x)$, is already factored and the real zeros of $f(x) = (x + 1)(x + 2)(x + 3)$ are $x = -3$, $x = -2$, and $x = -1$. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing the zeros of f to get: $(-\infty, -3)$, $(-3, -2)$, $(-2, -1)$, $(-1, \infty)$.

Page 219 Number 26. Solve the inequality $(x + 1)(x + 2)(x + 3) \le 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = (x+1)(x+2)(x+3)$. For Step 2, we see that the left side of the inequality, $f(x)$, is already factored and the real zeros of $f(x) = (x + 1)(x + 2)(x + 3)$ are $x = -3$, $x = -2$, and $x = -1$. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing the zeros of f to get: $(-\infty, -3)$, $(-3, -2)$, $(-2, -1)$, $(-1, \infty)$. For Step 4, consider

Page 219 Number 26. Solve the inequality $(x + 1)(x + 2)(x + 3) \le 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = (x+1)(x+2)(x+3)$. For Step 2, we see that the left side of the inequality, $f(x)$, is already factored and the real zeros of $f(x) = (x + 1)(x + 2)(x + 3)$ are $x = -3$, $x = -2$, and $x = -1$. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing the zeros of f to get: $(-\infty, -3)$, $(-3, -2)$, $(-2, -1)$, $(-1, \infty)$. For Step 4, consider

So $f(x) \le 0$ for $x \in (-\infty, -3] \cup [-2, -1]$.

Page 219 Number 26. Solve the inequality $(x + 1)(x + 2)(x + 3) \le 0$ algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = (x+1)(x+2)(x+3)$. For Step 2, we see that the left side of the inequality, $f(x)$, is already factored and the real zeros of $f(x) = (x + 1)(x + 2)(x + 3)$ are $x = -3$, $x = -2$, and $x = -1$. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing the zeros of f to get: $(-\infty, -3)$, $(-3, -2)$, $(-2, -1)$, $(-1, \infty)$. For Step 4, consider

So $f(x) \le 0$ for $x \in (-\infty, -3] \cup [-2, -1]$.

Page 219 Number 48. Solve the inequality $\frac{(2-x)^3(3x-2)}{3x-1}$ $\frac{x}{x^3+1}$ < 0 algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = \frac{(2-x)^3(3x-2)}{x^3+1}$ $\frac{x^3+1}{x^3+1}$.

Page 219 Number 48. Solve the inequality $\frac{(2-x)^3(3x-2)}{3x-1}$ $\frac{x}{x^3+1}$ < 0 algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = \frac{(2-x)^3(3x-2)}{3x-1}$ $\frac{x^3+1}{x^3+1}$.

For Step 2, we see that the left side of the inequality, $f(x)$, is already factored and the real zeros of f are $x = 2$ and $x = 2/3$, and the only zero ractored and the real zeros of *r* are *x* = $\sqrt[3]{-1} = -1$.

Page 219 Number 48. Solve the inequality $\frac{(2-x)^3(3x-2)}{3x-1}$ $\frac{x}{x^3+1}$ < 0 algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = \frac{(2-x)^3(3x-2)}{3x-1}$ $\frac{x^3+1}{x^3+1}$. For Step 2, we see that the left side of the inequality, $f(x)$, is already factored and the real zeros of f are $x = 2$ and $x = 2/3$, and the only zero ractored and the real zeros of r are $x = 2$ and $x = 2/3$, and the only
of the denominator is $x = \sqrt[3]{-1} = -1$. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing these zeros to get: $(-\infty, -1)$, $(-1, 2/3)$, $(2/3, 2)$, $(2, \infty)$.

Page 219 Number 48. Solve the inequality $\frac{(2-x)^3(3x-2)}{3x-1}$ $\frac{x}{x^3+1}$ < 0 algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = \frac{(2-x)^3(3x-2)}{3x-1}$ $\frac{x^3+1}{x^3+1}$. For Step 2, we see that the left side of the inequality, $f(x)$, is already factored and the real zeros of f are $x = 2$ and $x = 2/3$, and the only zero

ractored and the real zeros of r are $x = 2$ and $x = 2/3$, and the only
of the denominator is $x = \sqrt[3]{-1} = -1$. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing these zeros to get: (−∞, −1), (−1, 2/3), (2/3, 2), (2,∞). For Step 4, consider

Ξ

Page 219 Number 48. Solve the inequality $\frac{(2-x)^3(3x-2)}{3x-1}$ $\frac{x}{x^3+1}$ < 0 algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = \frac{(2-x)^3(3x-2)}{3x-1}$ $\frac{x^3+1}{x^3+1}$.

For Step 2, we see that the left side of the inequality, $f(x)$, is already factored and the real zeros of f are $x = 2$ and $x = 2/3$, and the only zero ractored and the real zeros of r are $x = 2$ and $x = 2/3$, and the only
of the denominator is $x = \sqrt[3]{-1} = -1$. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing these zeros to get: $(-\infty, -1)$, $(-1, 2/3)$, $(2/3, 2)$, $(2, \infty)$. For Step 4, consider

So $f(x) < 0$ for $x \in (-1, 2/3) \cup (2, \infty)$.

Page 219 Number 48. Solve the inequality $\frac{(2-x)^3(3x-2)}{3x-1}$ $\frac{x}{x^3+1}$ < 0 algebraically.

Solution. We follow the 4 step method just introduced. Step 1 is given in the statement of the question, where we take $f(x) = \frac{(2-x)^3(3x-2)}{3x-1}$ $\frac{x^3+1}{x^3+1}$.

For Step 2, we see that the left side of the inequality, $f(x)$, is already factored and the real zeros of f are $x = 2$ and $x = 2/3$, and the only zero ractored and the real zeros of r are $x = 2$ and $x = 2/3$, and the only
of the denominator is $x = \sqrt[3]{-1} = -1$. For Step 3, we divide the real number line $\mathbb{R} = (-\infty, \infty)$ into intervals by removing these zeros to get: $(-\infty, -1)$, $(-1, 2/3)$, $(2/3, 2)$, $(2, \infty)$. For Step 4, consider

So
$$
f(x) < 0
$$
 for x in $(-1, 2/3) \cup (2, \infty)$.

Ξ

Page 219 Number 64. Consider $f(x) = \frac{x^3 - 6x^2 + 9x - 4}{x^2 + 16x - 30}$ $\frac{x^2 + x - 20}{x^2 + x - 20}$. (a) Graph f, and (b) solve $f(x) \ge 0$. HINT: $x^3 - 6x^2 + 9x - 4 = (x - 4)(x - 1)^2$

Solution. (a) We follow the 7 steps for graphing a rational function introduced in Section 4.3. For Step 1, we factor the numerator and denominator of f . The numerator is factored using the hint and the denominator easily factors as $x^2 + x - 20 = (x - 4)(x + 5)$. So, in fact, $f(x) = \frac{(x-4)(x-1)^2}{(x-4)(x+5)}$. We see that the domain of f is all real numbers except $x = -5$ and $x = 4$; that is, the domain is $(-\infty, -5) \cup (-5, 4) \cup (4, \infty).$

Page 219 Number 64. Consider $f(x) = \frac{x^3 - 6x^2 + 9x - 4}{x^2 + 16x - 30}$ $\frac{x^2 + x - 20}{x^2 + x - 20}$. (a) Graph f, and (b) solve $f(x) \ge 0$. HINT: $x^3 - 6x^2 + 9x - 4 = (x - 4)(x - 1)^2$

Solution. (a) We follow the 7 steps for graphing a rational function introduced in Section 4.3. For Step 1, we factor the numerator and denominator of f . The numerator is factored using the hint and the denominator easily factors as $x^2 + x - 20 = (x - 4)(x + 5)$. So, in fact, $f(x)=\dfrac{(x-4)(x-1)^2}{(x-4)(x+5)}.$ We see that the domain of f is all real numbers except $x = -5$ and $x = 4$; that is, the domain is $(-\infty, -5) \cup (-5, 4) \cup (4, \infty)$. For Step 2, we write f in lowest terms, but carefully preserve the information about the domain. So we have $f(x) = \frac{(x-4)(x-1)^2}{(x-4)(x+5)}$ $(x - 1)^2$ $\frac{(-2)}{x+5}$ for $x \neq 4$.

Page 219 Number 64. Consider $f(x) = \frac{x^3 - 6x^2 + 9x - 4}{x^2 + 16x - 30}$ $\frac{x^2 + x - 20}{x^2 + x - 20}$. (a) Graph f, and (b) solve $f(x) \ge 0$. HINT: $x^3 - 6x^2 + 9x - 4 = (x - 4)(x - 1)^2$

Solution. (a) We follow the 7 steps for graphing a rational function introduced in Section 4.3. For Step 1, we factor the numerator and denominator of f . The numerator is factored using the hint and the denominator easily factors as $x^2 + x - 20 = (x - 4)(x + 5)$. So, in fact, $f(x)=\dfrac{(x-4)(x-1)^2}{(x-4)(x+5)}.$ We see that the domain of f is all real numbers except $x = -5$ and $x = 4$; that is, the domain is $(-\infty, -5) \cup (-5, 4) \cup (4, \infty)$. For Step 2, we write f in lowest terms, but carefully preserve the information about the domain. So we have $f(x) = \frac{(x-4)(x-1)^2}{(x-4)(x+5)} =$ $(x - 1)^2$ $\frac{(-1)^{x}}{x+5}$ for $x \neq 4$.

Page 219 Number 64 (continued 1)

Solution (continued). For Step 3, we find the x -intercepts by solving $f(x) = 0$ for x in the domain of f. So we set the numerator of f equal to 0, $(x - 4)(x - 1)^2 = 0$, and we see that this implies that $x = 1$ and $x = 4$; however, 4 is not in the domain of f so the only x-intercept is $x = 1$. Notice that $x = 1$ is a zero of f of multiplicity 2, so the graph touches the $x - axis$ at $x = 1$. For the y-intercept, we set $x = 0$ to get $f(0)=\frac{(-4)(-1)^2}{(-4)(5)}=\frac{1}{5}$ $\frac{1}{5}$. For Step 4, to find vertical asymptotes we set the denominator of f (in lowest terms) equal to 0 to get $x + 5 = 0$ or $x = -5$. So there is a vertical asymptote of $x = -5$ (notice that when f is NOT in lowest terms, the denominator is also 0 at $x = 4$, but this does not yield a vertical asymptote at $x = 4$; see Theorem 2.2.A).

Page 219 Number 64 (continued 1)

Solution (continued). For Step 3, we find the x -intercepts by solving $f(x) = 0$ for x in the domain of f. So we set the numerator of f equal to 0, $(x - 4)(x - 1)^2 = 0$, and we see that this implies that $x = 1$ and $x = 4$; however, 4 is not in the domain of f so the only x-intercept is $x = 1$. Notice that $x = 1$ is a zero of f of multiplicity 2, so the graph touches the $x - axis$ at $x = 1$. For the y-intercept, we set $x = 0$ to get $f(0)=\frac{(-4)(-1)^2}{(-4)(5)}=\frac{1}{5}$ $\frac{1}{5}$. For Step 4, to find vertical asymptotes we set the denominator of f (in lowest terms) equal to 0 to get $x + 5 = 0$ or $x = -5$. So there is a vertical asymptote of $x = -5$ (notice that when f is NOT in lowest terms, the denominator is also 0 at $x = 4$, but this does not yield a **vertical asymptote at** $x = 4$ **; see Theorem 2.2.A).** In Step 5, we find horizontal or oblique asymptotes. Notice that the denominator of f is degree $m = 2$ and the numerator is of degree $n = 3 = m + 1$, so f has an oblique asymptote $y = ax + b$ which we find by long division (see Section 4.2); we can deal with the version of f in lowest terms:

Page 219 Number 64 (continued 1)

Solution (continued). For Step 3, we find the x -intercepts by solving $f(x) = 0$ for x in the domain of f. So we set the numerator of f equal to 0, $(x - 4)(x - 1)^2 = 0$, and we see that this implies that $x = 1$ and $x = 4$; however, 4 is not in the domain of f so the only x-intercept is $x = 1$. Notice that $x = 1$ is a zero of f of multiplicity 2, so the graph touches the $x - axis$ at $x = 1$. For the y-intercept, we set $x = 0$ to get $f(0)=\frac{(-4)(-1)^2}{(-4)(5)}=\frac{1}{5}$ $\frac{1}{5}$. For Step 4, to find vertical asymptotes we set the denominator of f (in lowest terms) equal to 0 to get $x + 5 = 0$ or $x = -5$. So there is a vertical asymptote of $x = -5$ (notice that when f is NOT in lowest terms, the denominator is also 0 at $x = 4$, but this does not yield a vertical asymptote at $x = 4$; see Theorem 2.2.A). In Step 5, we find horizontal or oblique asymptotes. Notice that the denominator of f is degree $m = 2$ and the numerator is of degree $n = 3 = m + 1$, so f has an oblique asymptote $y = ax + b$ which we find by long division (see Section 4.2); we can deal with the version of f in lowest terms:

Page 219 Number 64 (continued 2)

So the oblique asymptote is $y = x - 7$. For Step 6, we have that f is 0 at $x = 1$ and is not defined at $x = -5$ and $x = 4$, so we divide the x-axis into intervals: $(-\infty, -5)$, $(-5, 1)$, $(1, 4)$, $(4, \infty)$. Consider (we use the reduced version of f):

Page 219 Number 64 (continued 2)

Solution (continued). $x+5$) $x^2 - 2x + 1$ x^2 + 5x − 7x + 1 $-7x - 35$ 36

So the oblique asymptote is $y = x - 7$. For Step 6, we have that f is 0 at $x = 1$ and is not defined at $x = -5$ and $x = 4$, so we divide the x-axis into intervals: $(-\infty, -5)$, $(-5, 1)$, $(1, 4)$, $(4, \infty)$. Consider (we use the reduced version of f):

So f is below the x-axis on $(-\infty, -5)$ and f is above the x-axis on $(-5, 1) \cup (1, 4) \cup (4, \infty).$

Page 219 Number 64 (continued 2)

Solution (continued). $x = 7$ $x+5$) $x^2 - 2x + 1$ x^2 + 5x − 7x + 1 − 7x − 35 36

So the oblique asymptote is $y = x - 7$. For Step 6, we have that f is 0 at $x = 1$ and is not defined at $x = -5$ and $x = 4$, so we divide the x-axis into intervals: $(-\infty, -5)$, $(-5, 1)$, $(1, 4)$, $(4, \infty)$. Consider (we use the reduced version of f):

So f is below the x-axis on $(-\infty, -5)$ and f is above the x-axis on $(-5, 1) \cup (1, 4) \cup (4, \infty).$

Page 219 Number 64 (continued 3)

Solution (continued). Notice that since f is negative on $(-\infty, -5)$ and f has a vertical asymptote at $x = -5$, then (in the notation of Page 193 Figure 29), $\lim_{x\to -5^-} f(x) = -\infty$. Since f is positive on (-5, 1) and f has a vertical asymptote at $x = -5$, then $\lim_{x \to -5^+} f(x) = \infty$ (this gives the behavior of the graph of f on either side of the vertical asymptote, completing Step 4).

Before graphing, we notice that $f(x) = \frac{(x-4)(x-1)^2}{(x-4)(x+5)}$ $(x - 1)^2$ $\frac{(-1)^{x}}{x+5}$ for $x \neq 4$. Each of the properties above are satisfied by the function $g(x) = \frac{(x-1)^2}{x+5}$, except for the fact that the domain of g includes $x = 4$ (at which the value is $g(4) = ((4) - 1)^2/((4) + 5) = 9/9 = 1$ and the domain of f does not. The effect of this is that the graph of f and g are the same, except at the point $(4, 1)$ where g includes this point and f does not. So the graph of f is the same as the graph of g , except that a "hole" is punched in the graph of f at $(4, 1)$. All this information combines to give the following graph.

Page 219 Number 64 (continued 3)

Solution (continued). Notice that since f is negative on $(-\infty, -5)$ and f has a vertical asymptote at $x = -5$, then (in the notation of Page 193 Figure 29), $\lim_{x\to -5^-} f(x) = -\infty$. Since f is positive on (-5, 1) and f has a vertical asymptote at $x = -5$, then $\lim_{x \to -5^+} f(x) = \infty$ (this gives the behavior of the graph of f on either side of the vertical asymptote, completing Step 4).

Before graphing, we notice that $f(x) = \frac{(x-4)(x-1)^2}{(x-4)(x+5)} =$ $(x - 1)^2$ $\frac{(-1)^{x}}{x+5}$ for $x \neq 4$. Each of the properties above are satisfied by the function $g(x)=\frac{(x-1)^2}{x+5}$, except for the fact that the domain of g includes $x=4$ (at which the value is $g(4) = ((4) - 1)^2/((4) + 5) = 9/9 = 1$ and the domain of f does not. The effect of this is that the graph of f and g are the same, except at the point $(4, 1)$ where g includes this point and f does not. So the graph of f is the same as the graph of g , except that a "hole" is punched in the graph of f at $(4, 1)$. All this information combines to give the following graph.

Page 219 Number 64 (continued 4)

Solution (continued).

(b) We see from the graph that $f(x) \geq 0$ for x in $|(-5, 4) \cup (4, \infty)|$.

Page 220 Number 76

Page 220 Number 76. Suppose that the government imposes a \$1000-per-day tax on the bicycle manufacturer so that the daily cost C of manufacturing x bicycles is now given by $C(x) = 80x + 6000$. The average daily cost \overline{C} is given by $\overline{C}(x) = (80x + 6000)/x$. How many bicycles must be produced each day for the average cost to be no more than \$100?

Solution. For the average cost \overline{C} to be no more than \$100 requires $\overline{C}(x) = (80x + 6000)/x < 100$, so we solve this inequality algebraically by following the 4 steps. For Step 1, define $f(x) = \overline{C}(x) - 100 = (80x + 6000)/x - 100 = (6000 - 20x)/x$ so that the given inequality becomes $f(x) = (6000 - 20x)/x < 0$.

Page 220 Number 76

Page 220 Number 76. Suppose that the government imposes a \$1000-per-day tax on the bicycle manufacturer so that the daily cost C of manufacturing x bicycles is now given by $C(x) = 80x + 6000$. The average daily cost \overline{C} is given by $\overline{C}(x) = (80x + 6000)/x$. How many bicycles must be produced each day for the average cost to be no more than \$100?

Solution. For the average cost \overline{C} to be no more than \$100 requires $\overline{C}(x) = (80x + 6000)/x \le 100$, so we solve this inequality algebraically by following the 4 steps. For Step 1, define $f(x) = \overline{C}(x) - 100 = (80x + 6000)/x - 100 = (6000 - 20x)/x$ so that the given inequality becomes $f(x) = (6000 - 20x)/x \le 0$. For Step 2, we see that the left side of the inequality, $f(x) = (6000 - 20x)/x$, is already factored and the real zero of f is $x = 6000/20 = 300$, and the only zero of the denominator is $x = 0$. However, notice that x is a number of bicycles so we must have $x \geq 0$. But we also just saw that $x \neq 0$; this means the domain of f is $(0, \infty)$.

Page 220 Number 76

Page 220 Number 76. Suppose that the government imposes a \$1000-per-day tax on the bicycle manufacturer so that the daily cost C of manufacturing x bicycles is now given by $C(x) = 80x + 6000$. The average daily cost \overline{C} is given by $\overline{C}(x) = (80x + 6000)/x$. How many bicycles must be produced each day for the average cost to be no more than \$100?

Solution. For the average cost \overline{C} to be no more than \$100 requires $\overline{C}(x) = (80x + 6000)/x \le 100$, so we solve this inequality algebraically by following the 4 steps. For Step 1, define $f(x) = \overline{C}(x) - 100 = (80x + 6000)/x - 100 = (6000 - 20x)/x$ so that the given inequality becomes $f(x) = (6000 - 20x)/x < 0$. For Step 2, we see that the left side of the inequality, $f(x) = (6000 - 20x)/x$, is already factored and the real zero of f is $x = 6000/20 = 300$, and the only zero of the denominator is $x = 0$. However, notice that x is a number of bicycles so we must have $x \geq 0$. But we also just saw that $x \neq 0$; this means the domain of f is $(0, \infty)$.

Page 220 Number 76 (continued)

Page 220 Number 76. Suppose that the government imposes a \$1000-per-day tax on the bicycle manufacturer so that the daily cost C of manufacturing x bicycles is now given by $C(x) = 80x + 6000$. The average daily cost \overline{C} is given by $\overline{C}(x) = (80x + 6000)/x$. How many bicycles must be produced each day for the average cost to be no more than \$100?

Solution (continued). For Step 3, we divide the domain of f, $(0, \infty)$, into intervals by removing the points $x = 0$ and $x = 300$ to get: (0,300), $(300, \infty)$. For Step 4, consider

Page 220 Number 76 (continued)

Page 220 Number 76. Suppose that the government imposes a \$1000-per-day tax on the bicycle manufacturer so that the daily cost C of manufacturing x bicycles is now given by $C(x) = 80x + 6000$. The average daily cost \overline{C} is given by $\overline{C}(x) = (80x + 6000)/x$. How many bicycles must be produced each day for the average cost to be no more than \$100?

Solution (continued). For Step 3, we divide the domain of f, $(0, \infty)$, into intervals by removing the points $x = 0$ and $x = 300$ to get: $(0, 300)$, $(300, \infty)$. For Step 4, consider

So $f(x) \le 0$ (and $\overline{C}(x) \le 100$) for x in [300, ∞). So the bicycle manufacturer should produce at least 300 bicycles each day.

Page 220 Number 76 (continued)

Page 220 Number 76. Suppose that the government imposes a \$1000-per-day tax on the bicycle manufacturer so that the daily cost C of manufacturing x bicycles is now given by $C(x) = 80x + 6000$. The average daily cost \overline{C} is given by $\overline{C}(x) = (80x + 6000)/x$. How many bicycles must be produced each day for the average cost to be no more than \$100?

Solution (continued). For Step 3, we divide the domain of f, $(0, \infty)$, into intervals by removing the points $x = 0$ and $x = 300$ to get: (0,300), $(300, \infty)$. For Step 4, consider

So $f(x) \le 0$ (and $\overline{C}(x) \le 100$) for x in [300, ∞). So the bicycle manufacturer should produce at least 300 bicycles each day