Precalculus 1 (Algebra)

Chapter 5. Exponential and Logarithmic Functions 5.1. Composite Functions—Exercises, Examples, Proofs

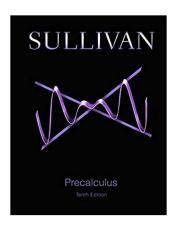
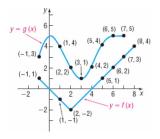


Table of contents

- Page 254 Number 12
- 2 Page 254 Number 22
- 3 Page 255 Number 30
- Page 255 Number 36
- Page 255 Number 44
- 6 Page 255 Number 48
- Page 255 Number 60. Volume of a Balloon

Page 254 Number 12. Evaluate each expression using the graphs of y = f(x) and y = g(x) shown here. (a) $(g \circ f)(1)$, (b) $(g \circ f)(5)$, (c) $(f \circ g)(0)$, and (d) $(f \circ g)(2)$.



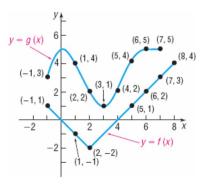
Solution. (a) To find $(g \circ f)(1) = g(f(1))$, we first find f(1) from the graph. The graph of f contains the point (1,-1), so f(1)=-1. Hence $(g \circ f)(1) = g(f(1)) = g(-1)$. The graph of g contains the point (-1,3) so g(-1)=3 and therefore $g(g \circ f)(1) = g(f(1)) = g(-1)=3$.

Page 254 Number 12. Evaluate each expression using the graphs of y = f(x) and y = g(x) shown here. (a) $(g \circ f)(1)$, (b) $(g \circ f)(5)$, (c) $(f \circ g)(0)$, and (d) $(f \circ g)(2)$.

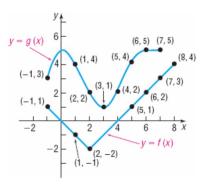


Solution. (a) To find $(g \circ f)(1) = g(f(1))$, we first find f(1) from the graph. The graph of f contains the point (1,-1), so f(1)=-1. Hence $(g \circ f)(1) = g(f(1)) = g(-1)$. The graph of g contains the point (-1,3) so g(-1)=3 and therefore $g(g \circ f)(1) = g(f(1)) = g(-1)=3$.

Page 254 Number 12 (continued 1)

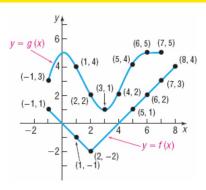


Page 254 Number 12 (continued 2)



Solution (continued). (c) To find $(f \circ g)(0) = f(g(0))$, we first find g(0) from the graph. The graph of g contains the point (0,5), so g(0)=5. Hence $(f \circ g)(0) = f(g(0)) = f(5)$. The graph of f contains the point (5,1) so f(5)=1 and therefore $(f \circ g)(0) = f(g(0)) = f(5) = 1$.

Page 254 Number 12 (continued 3)



Solution (continued). (d) To find $(f \circ g)(2) = f(g(2))$, we first find g(2) from the graph. The graph of g contains the point (2,2), so g(2) = 2. Hence $(f \circ g)(2) = f(g(2)) = f(2)$. The graph of f contains the point (2,-2) so f(2) = -2 and therefore

$$(f \circ g)(2) = f(g(2)) = f(2) = -2$$

Page 254 Number 22. Consider $f(x) = x^{3/2}$ and $g(x) = \frac{2}{x+1}$. Find **(a)** $(f \circ g)(4)$, **(b)** $(g \circ f)(2)$, **(c)** $(f \circ f)(1)$, **(d)** $(g \circ g)(0)$.

Proof. Notice that
$$f(g(x)) = f\left(\frac{2}{x+1}\right) = \left(\frac{2}{x+1}\right)^{3/2}$$
 and $g(f(x)) = g(x^{3/2}) = \frac{2}{x^{3/2} + 1}$.

(a) We have
$$(f \circ g)(4) = f(g(4)) = \left(\frac{2}{(4)+1}\right)^{3/2} = (2/5)^{3/2}$$
.

Page 254 Number 22. Consider $f(x) = x^{3/2}$ and $g(x) = \frac{2}{x+1}$. Find **(a)** $(f \circ g)(4)$, **(b)** $(g \circ f)(2)$, **(c)** $(f \circ f)(1)$, **(d)** $(g \circ g)(0)$.

Proof. Notice that
$$f(g(x)) = f\left(\frac{2}{x+1}\right) = \left(\frac{2}{x+1}\right)^{3/2}$$
 and $g(f(x)) = g(x^{3/2}) = \frac{2}{x^{3/2} + 1}$.

(a) We have
$$(f \circ g)(4) = f(g(4)) = \left(\frac{2}{(4)+1}\right)^{3/2} = \boxed{(2/5)^{3/2}}$$
.

(b) We have
$$(g \circ f)(2) = g(f(2)) = \frac{2}{2^{3/2} + 1}$$
.

Page 254 Number 22. Consider $f(x) = x^{3/2}$ and $g(x) = \frac{2}{x+1}$. Find **(a)** $(f \circ g)(4)$, **(b)** $(g \circ f)(2)$, **(c)** $(f \circ f)(1)$, **(d)** $(g \circ g)(0)$.

Proof. Notice that
$$f(g(x)) = f\left(\frac{2}{x+1}\right) = \left(\frac{2}{x+1}\right)^{3/2}$$
 and $g(f(x)) = g(x^{3/2}) = \frac{2}{x^{3/2} + 1}$.

(a) We have
$$(f \circ g)(4) = f(g(4)) = \left(\frac{2}{(4)+1}\right)^{3/2} = \boxed{(2/5)^{3/2}}$$
.

(b) We have
$$(g \circ f)(2) = g(f(2)) = \frac{2}{2^{3/2} + 1}$$
.

(c) We have
$$(f \circ f)(1) = f(f(1)) = f((1)^{3/2}) = f(1) = 1^{3/2} = \boxed{1}$$
.

Page 254 Number 22. Consider $f(x) = x^{3/2}$ and $g(x) = \frac{2}{x+1}$. Find **(a)** $(f \circ g)(4)$, **(b)** $(g \circ f)(2)$, **(c)** $(f \circ f)(1)$, **(d)** $(g \circ g)(0)$.

Proof. Notice that
$$f(g(x)) = f\left(\frac{2}{x+1}\right) = \left(\frac{2}{x+1}\right)^{3/2}$$
 and $g(f(x)) = g(x^{3/2}) = \frac{2}{x^{3/2} + 1}$.

(a) We have
$$(f \circ g)(4) = f(g(4)) = \left(\frac{2}{(4)+1}\right)^{3/2} = \boxed{(2/5)^{3/2}}$$
.

(b) We have
$$(g \circ f)(2) = g(f(2)) = \boxed{\frac{2}{2^{3/2} + 1}}$$
.

(c) We have
$$(f \circ f)(1) = f(f(1)) = f((1)^{3/2}) = f(1) = 1^{3/2} = \boxed{1}$$
.

(d) We have

$$(g \circ g)(0) = g(g(0)) = g\left(\frac{2}{(0)+1}\right) = g(2) = \frac{2}{(2)+1} = 2/3$$

Page 254 Number 22. Consider $f(x) = x^{3/2}$ and $g(x) = \frac{2}{x+1}$. Find **(a)** $(f \circ g)(4)$, **(b)** $(g \circ f)(2)$, **(c)** $(f \circ f)(1)$, **(d)** $(g \circ g)(0)$.

Proof. Notice that
$$f(g(x)) = f\left(\frac{2}{x+1}\right) = \left(\frac{2}{x+1}\right)^{3/2}$$
 and $g(f(x)) = g(x^{3/2}) = \frac{2}{x^{3/2} + 1}$.

(a) We have
$$(f \circ g)(4) = f(g(4)) = \left(\frac{2}{(4)+1}\right)^{3/2} = \boxed{(2/5)^{3/2}}$$
.

(b) We have
$$(g \circ f)(2) = g(f(2)) = \frac{2}{2^{3/2} + 1}$$
.

(c) We have
$$(f \circ f)(1) = f(f(1)) = f((1)^{3/2}) = f(1) = 1^{3/2} = \boxed{1}$$
.

(d) We have

$$(g \circ g)(0) = g(g(0)) = g\left(\frac{2}{(0)+1}\right) = g(2) = \frac{2}{(2)+1} = 2/3$$

Page 255 Number 30. State the domain of the composite functions $f \circ g$ and $g \circ f$ where f(x) = 1/(x+3) and g(x) = -2/x.

Solution. We compose the functions to find

$$(f \circ g)(x) = f(g(x)) = f(-2/x) = \frac{1}{(-2/x) + 3} = \frac{1}{(-2/x) + 3} \left(\frac{x}{x}\right)$$
$$= \frac{x}{-2(x/x) + 3x} = \frac{x}{-2 + 3x} \text{ if } x \neq 0,$$

so the domain of $f \circ g$ is all real numbers except 0 and 2/3; that is, the domain of $f \circ g$ is $(-\infty, 0) \cup (0, 2/3) \cup (2/3, \infty)$.

Page 255 Number 30. State the domain of the composite functions $f \circ g$ and $g \circ f$ where f(x) = 1/(x+3) and g(x) = -2/x.

Solution. We compose the functions to find

$$(f \circ g)(x) = f(g(x)) = f(-2/x) = \frac{1}{(-2/x) + 3} = \frac{1}{(-2/x) + 3} \left(\frac{x}{x}\right)$$
$$= \frac{x}{-2(x/x) + 3x} = \frac{x}{-2 + 3x} \text{ if } x \neq 0,$$

so the domain of $f \circ g$ is all real numbers except 0 and 2/3; that is, the domain of $f \circ g$ is $(-\infty, 0) \cup (0, 2/3) \cup (2/3, \infty)$.

Page 255 Number 30 (continued)

Page 255 Number 30. State the domain of the composite functions $f \circ g$ and $g \circ f$ where f(x) = 1/(x+3) and g(x) = -2/x.

Solution. Similarly we compose:

$$(g \circ f)(x) = g(f(x)) = g\left(\frac{1}{x+3}\right) = \frac{-2}{1/(x+3)} = \frac{-2}{1/(x+3)} \left(\frac{x+3}{x+3}\right)$$
$$= \frac{-2(x+3)}{(x+3)/(x+3)} = -2x - 6 \text{ if } x \neq -3.$$

So the domain of $g \circ f$ is all real numbers except -3; that is, the

domain of
$$g \circ f$$
 is $(-\infty, -3) \cup (-3, \infty)$.

Page 255 Number 36. State the domain of the composite functions $f \circ g$ and $g \circ f$ where $f(x) = x^2 + 4$ and $g(x) = \sqrt{x - 2}$.

Proof. We compose the functions to find

$$(f \circ g)(x) = f(\sqrt{x-2}) = (\sqrt{x-2})^2 + 4 = (x-2) + 4 \text{ if } x \ge 2$$

= $x + 2 \text{ if } x \ge 2$.

So the domain of $f \circ g$ is all real x with $x \geq 2$; that is, the domain of $f \circ g$ is $[2, \infty)$.

Page 255 Number 36. State the domain of the composite functions $f \circ g$ and $g \circ f$ where $f(x) = x^2 + 4$ and $g(x) = \sqrt{x - 2}$.

Proof. We compose the functions to find

$$(f \circ g)(x) = f(\sqrt{x-2}) = (\sqrt{x-2})^2 + 4 = (x-2) + 4 \text{ if } x \ge 2$$

= $x + 2 \text{ if } x \ge 2$.

So the domain of $f \circ g$ is all real x with $x \ge 2$; that is, the

domain of $f \circ g$ is $[2, \infty)$.

Similarly we compose:

$$(g \circ f)(x) = g(f(x)) = g(x^2 + 4) = \sqrt{(x^2 + 4) - 2} = \sqrt{x^2 + 2}.$$

Since $x^2 + 2 \ge 0$ for all real x, the domain of $g \circ f$ is all real numbers \mathbb{R} .

Page 255 Number 36. State the domain of the composite functions $f \circ g$ and $g \circ f$ where $f(x) = x^2 + 4$ and $g(x) = \sqrt{x - 2}$.

Proof. We compose the functions to find

$$(f \circ g)(x) = f(\sqrt{x-2}) = (\sqrt{x-2})^2 + 4 = (x-2) + 4 \text{ if } x \ge 2$$

= $x + 2 \text{ if } x \ge 2$.

So the domain of $f \circ g$ is all real x with $x \geq 2$; that is, the domain of $f \circ g$ is $[2, \infty)$. Similarly we compose:

$$(g \circ f)(x) = g(f(x)) = g(x^2 + 4) = \sqrt{(x^2 + 4) - 2} = \sqrt{x^2 + 2}.$$

Since $x^2 + 2 \ge 0$ for all real x, the domain of $g \circ f$ is all real numbers \mathbb{R} .

Ш

Page 255 Number 44. Show that $(f \circ g)(x) = (g \circ f)(x) = x$ for f(x) = 4 - 3x and g(x) = (4 - x)/3.

Proof. Composing, we have

$$(f \circ g)(x) = f(g(x)) = f((4-x)/3)$$
$$= 4 - 3((4-x)/3) = 4 - (4-x) = 4 - 4 + x = x,$$

as claimed.

Page 255 Number 44. Show that $(f \circ g)(x) = (g \circ f)(x) = x$ for f(x) = 4 - 3x and g(x) = (4 - x)/3.

Proof. Composing, we have

$$(f \circ g)(x) = f(g(x)) = f((4-x)/3)$$
$$= 4 - 3((4-x)/3) = 4 - (4-x) = 4 - 4 + x = x,$$

as claimed.

Also,

$$(g \circ f)(x) = g(f(x)) = g(4 - 3x)$$
$$= (4 - (4 - 3x))/3 = (4 - 4 + 3x)/3 = 3x/3 = x,$$

as claimed.

Page 255 Number 44. Show that $(f \circ g)(x) = (g \circ f)(x) = x$ for f(x) = 4 - 3x and g(x) = (4 - x)/3.

Proof. Composing, we have

$$(f \circ g)(x) = f(g(x)) = f((4-x)/3)$$
$$= 4 - 3((4-x)/3) = 4 - (4-x) = 4 - 4 + x = x,$$

as claimed.

Also,

$$(g \circ f)(x) = g(f(x)) = g(4 - 3x)$$
$$= (4 - (4 - 3x))/3 = (4 - 4 + 3x)/3 = 3x/3 = x,$$

as claimed.

11 / 13

Page 255 Number 48. Find functions f and g so that $(f \circ g)(x) = H(x) = (1 + x^2)^3$.

Proof. For $H(x) = (1 + x^2)^3$, we want the "outer" function to be the cubing function and the "inner" function to be $1 + x^2$ (the inner function is the stuff that is cubed in H).

Page 255 Number 48. Find functions f and g so that $(f \circ g)(x) = H(x) = (1 + x^2)^3$.

Proof. For $H(x) = (1 + x^2)^3$, we want the "outer" function to be the cubing function and the "inner" function to be $1 + x^2$ (the inner function is the stuff that is cubed in H). So we set $g(x) = 1 + x^2$ and $f(x) = x^3$. Composing we have

$$(f \circ g)(x) = f(g(x)) = f(1+x^2) = (1+x^2)^3 = H(x),$$

as desired. So $f(x) = x^3$ and $g(x) = 1 + x^2$.

Page 255 Number 48. Find functions f and g so that $(f \circ g)(x) = H(x) = (1 + x^2)^3$.

Proof. For $H(x) = (1 + x^2)^3$, we want the "outer" function to be the cubing function and the "inner" function to be $1 + x^2$ (the inner function is the stuff that is cubed in H). So we set $g(x) = 1 + x^2$ and $f(x) = x^3$. Composing we have

$$(f \circ g)(x) = f(g(x)) = f(1+x^2) = (1+x^2)^3 = H(x),$$

as desired. So $f(x) = x^3$ and $g(x) = 1 + x^2$.

Page 255 Number 60. The volume V (in cubic meters) of a hot-air balloon of radius r (in meters) is given by $V(r) = \frac{4}{3}\pi r^3$. If the radius r as a function of time t (in seconds) is $r(t) = \frac{2}{3}t^3$, where $t \ge 0$, then find the volume V as a function of the time t.

Proof. Since V is a function of r, V(r), and r is a function of t, r(t), to get V as a function of t we take the composition $(V \circ r)(t) = V(r(t))$.

Page 255 Number 60. The volume V (in cubic meters) of a hot-air balloon of radius r (in meters) is given by $V(r) = \frac{4}{3}\pi r^3$. If the radius r as a function of time t (in seconds) is $r(t) = \frac{2}{3}t^3$, where $t \ge 0$, then find the volume V as a function of the time t.

Proof. Since V is a function of r, V(r), and r is a function of t, r(t), to get V as a function of t we take the composition $(V \circ r)(t) = V(r(t))$. We then have

$$(V \circ r)(t) = V(r(t)) = V\left(\frac{2}{3}t^3\right) = \frac{4}{3}\pi \left(\frac{2}{3}t^3\right)^3$$
$$= \frac{4}{3}\pi \left(\frac{2}{3}t^3\right)^3 = \frac{4}{3}\pi \left(\frac{2$$

Page 255 Number 60. The volume V (in cubic meters) of a hot-air balloon of radius r (in meters) is given by $V(r) = \frac{4}{3}\pi r^3$. If the radius r as a function of time t (in seconds) is $r(t) = \frac{2}{3}t^3$, where $t \ge 0$, then find the volume V as a function of the time t.

Proof. Since V is a function of r, V(r), and r is a function of t, r(t), to get V as a function of t we take the composition $(V \circ r)(t) = V(r(t))$. We then have

$$(V \circ r)(t) = V(r(t)) = V\left(\frac{2}{3}t^3\right) = \frac{4}{3}\pi \left(\frac{2}{3}t^3\right)^3$$
$$= \frac{4}{3}\pi \frac{2^3}{3^3}(t^3)^3 = \frac{(4)(8)}{(3)(27)}\pi t^9 = \frac{32}{81}\pi t^9.$$

So volume V as a function of time t is $V = \frac{32}{81}\pi t^9$.

$$V = \frac{32}{81}\pi t^9$$

Page 255 Number 60. The volume V (in cubic meters) of a hot-air balloon of radius r (in meters) is given by $V(r) = \frac{4}{3}\pi r^3$. If the radius r as a function of time t (in seconds) is $r(t) = \frac{2}{3}t^3$, where $t \ge 0$, then find the volume V as a function of the time t.

Proof. Since V is a function of r, V(r), and r is a function of t, r(t), to get V as a function of t we take the composition $(V \circ r)(t) = V(r(t))$. We then have

$$(V \circ r)(t) = V(r(t)) = V\left(\frac{2}{3}t^3\right) = \frac{4}{3}\pi \left(\frac{2}{3}t^3\right)^3$$
$$= \frac{4}{3}\pi \frac{2^3}{3^3}(t^3)^3 = \frac{(4)(8)}{(3)(27)}\pi t^9 = \frac{32}{81}\pi t^9.$$

So volume V as a function of time t is $V = \frac{32}{81}\pi t^9$.

$$s V = \frac{32}{81}\pi t^9$$

13 / 13