Precalculus 1 (Algebra)

Chapter 5. Exponential and Logarithmic Functions 5.3. Exponential Functions—Exercises, Examples, Proofs

Table of contents

- Page 281 Number 38
- 2 Page 281 Number 52
- 3 Page 282 Number 66
- Page 282 Number 82
- 5 Page 282 Number 84
- 6 Page 282 Number 92
- Page 283 Number 106. Atmospheric Pressure

Page 281 Number 38. Match the graph with one of the following functions: **A.** $y = 3^{x}$, **B.** $y = 3^{2x}$, **C.** $y = 23^{x}$, **D.** $y = 23^{2x}$, **E.** $y = 3^{x} - 1$, **F.** $y = 3^{x-1}$, **G.** $y = 3^{1-x}$, **H.** $y = 1 - 3^{x}$.

Solution. Choices A, B (where $y = 3^{2x} = (3^2)^x = 9^x$), C, and D ((where $y = 23^{2x} = (23^2)^x = 529^x$) are simply exponential functions with base *a* where a > 1. Since such a function is increasing, then these do not match the graph.

Page 281 Number 38. Match the graph with one of the following functions: **A.** $y = 3^{x}$, **B.** $y = 3^{2x}$, **C.** $y = 23^{x}$, **D.** $y = 23^{2x}$, **E.** $y = 3^{x} - 1$, **F.** $y = 3^{x-1}$, **G.** $y = 3^{1-x}$, **H.** $y = 1 - 3^{x}$.

Solution. Choices A, B (where $y = 3^{2x} = (3^2)^x = 9^x$), C, and D ((where $y = 23^{2x} = (23^2)^x = 529^x$) are simply exponential functions with base *a* where a > 1. Since such a function is increasing, then these do not match the graph.

Page 281 Number 38 (continued 1)

Page 281 Number 38. Match the graph with one of the following functions: **A.** $y = 3^{x}$, **B.** $y = 3^{2x}$, **C.** $y = 23^{x}$, **D.** $y = 23^{2x}$, **E.** $y = 3^{x} - 1$, **F.** $y = 3^{x-1}$, **G.** $y = 3^{1-x}$, **H.** $y = 1 - 3^{x}$.

Solution (continued). Choice E is a vertical shift down by 1 unit of the graph of $y = 3^x$, which yields an increasing function and this does not match the graph. Choice F is a horizontal shift to the right by 1 unit of the graph of $y = 3^x$, which yields an increasing function and this does not match the graph.

- 0

Page 281 Number 38 (continued 2)

Page 281 Number 38. Match the graph with one of the following functions: **A.** $y = 3^{x}$, **B.** $y = 3^{2x}$, **C.** $y = 23^{x}$, **D.** $y = 23^{2x}$, **E.** $y = 3^{x} - 1$, **F.** $y = 3^{x-1}$, **G.** $y = 3^{1-x}$, **H.** $y = 1 - 3^{x}$.

Solution (continued). Choice *G* is a function which is always positive, so this does not match the graph. Choice H must match the graph. **Note.** $y = 1 - 3^x$ results from the graph of $y = 3^x$ by (1) a reflection about the *x* axis (where y = f(x) is replaced with y = -f(x)), and (2) a vertical shift up by 1 unit (where y = g(x) is replaced with y = g(x) + 1).

Precalculus 1 (Algebra)

October 6, 2021 5 / 12

Page 281 Number 38 (continued 2)

Page 281 Number 38. Match the graph with one of the following functions: **A.** $y = 3^{x}$, **B.** $y = 3^{2x}$, **C.** $y = 23^{x}$, **D.** $y = 23^{2x}$, **E.** $y = 3^{x} - 1$, **F.** $y = 3^{x-1}$, **G.** $y = 3^{1-x}$, **H.** $y = 1 - 3^{x}$.

Solution (continued). Choice *G* is a function which is always positive, so this does not match the graph. Choice H must match the graph. **Note.** $y = 1 - 3^x$ results from the graph of $y = 3^x$ by (1) a reflection about the *x* axis (where y = f(x) is replaced with y = -f(x)), and (2) a vertical shift up by 1 unit (where y = g(x) is replaced with y = g(x) + 1).

Precalculus 1 (Algebra)

Page 281 Number 52. Use transformations to graph the function $f(x) = 1 - 2^{x+3}$. Determine the domain, range, and horizontal asymptote.

Solution. We start with the graph of $y = 2^x$. First, we replace y = f(x) with y = -f(x) to get $y = -2^x$, which is a reflection about the x-axis of $y = 2^x$. Second, we replace x with x + 3 = x - (-3) in $y = -2^x$ to get $y = -2^{x+3}$ which is a shift to the left by 3 units of $y = -2^x$. Third, we add 1 to -2^{x+3} to get $y = 1 - 2^{x+3}$ which is a vertical shift up by 1 unit of $y = -2^{x+3}$

Page 281 Number 52. Use transformations to graph the function $f(x) = 1 - 2^{x+3}$. Determine the domain, range, and horizontal asymptote.

Solution. We start with the graph of $y = 2^x$. First, we replace y = f(x) with y = -f(x) to get $y = -2^x$, which is a reflection about the x-axis of $y = 2^x$. Second, we replace x with x + 3 = x - (-3) in $y = -2^x$ to get $y = -2^{x+3}$ which is a shift to the left by 3 units of $y = -2^x$. Third, we add 1 to -2^{x+3} to get $y = 1 - 2^{x+3}$ which is a vertical shift up by 1 unit of $y = -2^{x+3}$ So we start with $y = 2^x$ and (1) reflect about the x-axis, (2) shift to the left by 3 units, and (3) shift up 1 unit to produce the graph of $f(x) = 1 - 2^{x+3}$.

Page 281 Number 52. Use transformations to graph the function $f(x) = 1 - 2^{x+3}$. Determine the domain, range, and horizontal asymptote.

Solution. We start with the graph of $y = 2^x$. First, we replace y = f(x) with y = -f(x) to get $y = -2^x$, which is a reflection about the x-axis of $y = 2^x$. Second, we replace x with x + 3 = x - (-3) in $y = -2^x$ to get $y = -2^{x+3}$ which is a shift to the left by 3 units of $y = -2^x$. Third, we add 1 to -2^{x+3} to get $y = 1 - 2^{x+3}$ which is a vertical shift up by 1 unit of $y = -2^{x+3}$ So we start with $y = 2^x$ and (1) reflect about the x-axis, (2) shift to the left by 3 units, and (3) shift up 1 unit to produce the graph of $f(x) = 1 - 2^{x+3}$.

Page 281 Number 52 (continued)

Solution. We have the following graph:

We see from the graph that the domain of f is \mathbb{R} , the range is $(-\infty, 1)$, and y = 1 is a horizontal asymptote.

Precalculus 1 (Algebra)

Page 281 Number 52 (continued)

Solution. We have the following graph:

We see from the graph that the domain of f is \mathbb{R} , the range is $(-\infty, 1)$, and y = 1 is a horizontal asymptote.

Precalculus 1 (Algebra)

Page 282 Number 66. Solve the equation $3^{-x} = 81$.

Solution. Since $81 = 9^2 = (3^2)^2 = 3^4$, then the equation becomes $3^{-x} = 3^4$. By the previous note, since $f(x) = 3^x$ is one-to-one, then -x = 4 or x = -4. So the solution set is $\{-4\}$.

Page 282 Number 66. Solve the equation $3^{-x} = 81$.

Solution. Since $81 = 9^2 = (3^2)^2 = 3^4$, then the equation becomes $3^{-x} = 3^4$. By the previous note, since $f(x) = 3^x$ is one-to-one, then -x = 4 or x = -4. So the solution set is $\{-4\}$.

Page 282 Number 82. Solve the equation $(e^4)^x e^{x^2} = e^{12}$.

Solution. By the properties of exponents (given in Theorem 5.3.A), we have $(e^4)^x e^{x^2} = e^{4x} e^{x^2} = e^{4x+x^2}$, so the equation becomes $e^{4x+x^2} = e^{12}$. By the previous note, since $f(x) = e^x$ is one-to-one, then we need $4x + x^2 = 12$, or $x^2 + 4x - 12 = 0$, or (x + 6)(x - 2) = 0. So the solution set is $[\{-6, 2\}]$.

Page 282 Number 82. Solve the equation $(e^4)^x e^{x^2} = e^{12}$.

Solution. By the properties of exponents (given in Theorem 5.3.A), we have $(e^4)^x e^{x^2} = e^{4x} e^{x^2} = e^{4x+x^2}$, so the equation becomes $e^{4x+x^2} = e^{12}$. By the previous note, since $f(x) = e^x$ is one-to-one, then we need $4x + x^2 = 12$, or $x^2 + 4x - 12 = 0$, or (x + 6)(x - 2) = 0. So the solution set is [-6, 2].

Page 282 Number 84. If $2^{x} = 3$, what does 4^{-2x} equal?

Solution. Since we are given $2^{x} = 3$, then $(2^{x})^{2} = 3^{2}$, or $2^{2x} = 9$, or $(2^{2})^{x} = 9$, or $4^{x} = 9$. So $4^{-2x} = (4^{x})^{-2} = (9)^{-2} = 1/9^{2} = 1/81$.

Page 282 Number 84. If $2^{x} = 3$, what does 4^{-2x} equal?

Solution. Since we are given
$$2^{x} = 3$$
, then $(2^{x})^{2} = 3^{2}$, or $2^{2x} = 9$, or $(2^{2})^{x} = 9$, or $4^{x} = 9$. So $4^{-2x} = (4^{x})^{-2} = (9)^{-2} = 1/9^{2} = 1/81$.

Note. We solved this problem without actually finding x; we don't yet have a technique to solve for x, but soon will when we cover 5.5. Properties of Logarithms (see Change-of-Base Formula, Theorem 5.5.C).

Page 282 Number 84. If $2^{x} = 3$, what does 4^{-2x} equal?

Solution. Since we are given
$$2^x = 3$$
, then $(2^x)^2 = 3^2$, or $2^{2x} = 9$, or $(2^2)^x = 9$, or $4^x = 9$. So $4^{-2x} = (4^x)^{-2} = (9)^{-2} = 1/9^2 = 1/81$.

Note. We solved this problem without actually finding x; we don't yet have a technique to solve for x, but soon will when we cover 5.5. Properties of Logarithms (see Change-of-Base Formula, Theorem 5.5.C).

Page 282 Number 92. Determine the exponential function with this graph:

Solution. We look for a function of the form $f(x) = Ca^x$. Since the graph passes through the point (0, -1) then we must have $f(0) = Ca^0 = (C)(1) = C = -1$, so that C = -1. Since the graph passes through the point (1, -e) then we must have $f(1) = Ca^1 = Ca = (-1)a = -a = -e$, so that a = e. So the desired function must be $f(x) = Ca^x = -e^x$.

Page 282 Number 92. Determine the exponential function with this graph:

Solution. We look for a function of the form $f(x) = Ca^x$. Since the graph passes through the point (0, -1) then we must have $f(0) = Ca^0 = (C)(1) = C = -1$, so that C = -1. Since the graph passes through the point (1, -e) then we must have $f(1) = Ca^1 = Ca = (-1)a = -a = -e$, so that a = e. So the desired function must be $f(x) = Ca^x = -e^x$.

Page 283 Number 106. The atmospheric pressure p on a balloon or airplane decreases with increasing height. This pressure, measured in millimeters of mercury, is related to the height h (in kilometers) above sea level by the function $p(h) = 760e^{-0.145h}$. (a) Find the atmospheric pressure at a height of 2 km (over a mile). (b) What is it at a height of 10 kilometers (over 30,000 feet)?

Solution. (a) When h = 2 km, we have the pressure $p(2) = 760e^{-0.145(2)} = 760e^{-0.290} \approx 568.680$ mm.

Page 283 Number 106. The atmospheric pressure p on a balloon or airplane decreases with increasing height. This pressure, measured in millimeters of mercury, is related to the height h (in kilometers) above sea level by the function $p(h) = 760e^{-0.145h}$. (a) Find the atmospheric pressure at a height of 2 km (over a mile). (b) What is it at a height of 10 kilometers (over 30,000 feet)?

Solution. (a) When h = 2 km, we have the pressure $p(2) = 760e^{-0.145(2)} = 760e^{-0.290} \approx 568.680$ mm.

(b) When h = 10 km, we have the pressure $p(10) = 760e^{-0.145(10)} = 760e^{-1.450} \approx 178.273$ mm.

Page 283 Number 106. The atmospheric pressure p on a balloon or airplane decreases with increasing height. This pressure, measured in millimeters of mercury, is related to the height h (in kilometers) above sea level by the function $p(h) = 760e^{-0.145h}$. (a) Find the atmospheric pressure at a height of 2 km (over a mile). (b) What is it at a height of 10 kilometers (over 30,000 feet)?

Solution. (a) When h = 2 km, we have the pressure $p(2) = 760e^{-0.145(2)} = 760e^{-0.290} \approx 568.680$ mm.

(b) When h = 10 km, we have the pressure $p(10) = 760e^{-0.145(10)} = 760e^{-1.450} \approx 178.273$ mm.