Precalculus 1 (Algebra)

Chapter 5. Exponential and Logarithmic Functions 5.4. Logarithmic Functions—Exercises, Examples, Proofs

Table of contents

- [Page 294 Numbers 12 and 18](#page-2-0)
- [Page 294 Number 22](#page-5-0)
- [Page 295 Numbers 30 and 36](#page-7-0)
- [Page 295 Number 48](#page-10-0)
- [Page 295 Number 62](#page-13-0)
- [Page 295 Number 66](#page-16-0)
- [Page 295 Number 70](#page-19-0)
- [Page 295 Number 74](#page-21-0)
- [Page 295 Number 80](#page-29-0)
- [Page 296 Numbers 90, 96, 102, and 112](#page-37-0)
- [Page 297 Number 124. Expected Probability](#page-43-0)

Page 294 Numbers 12 and 18

Page 294 Numbers 12 and 18. Change each exponential statement to an equivalent statement involving a logarithm: $\bm{(12)}$ $16=$ 4^2 and (18) $e^{2.2} = M$.

Solution. (12) Since $y = \log_a x$ if and only if $x = a^y$, then with $x = 16$, $a = 4$, and $y = 2$ we have that $16 = 4^2$ is equivalent to $2 = \log_4 16$.

Page 294 Numbers 12 and 18

Page 294 Numbers 12 and 18. Change each exponential statement to an equivalent statement involving a logarithm: $\bm{(12)}$ $16=$ 4^2 and (18) $e^{2.2} = M$.

Solution. (12) Since $y = \log_a x$ if and only if $x = a^y$, then with $x = 16$, $a=4$, and $y=2$ we have that $16=4^2$ is equivalent to $\boxed{2=\log_4 16}$.

(18) Since $y = \log_a x$ if and only if $x = a^y$, then with $x = M$, $a = e$, and $y = 2.2$ we have that $e^{2.2} = M$ is equivalent to $\left| 2.2 - \log_e M \right|$.

Page 294 Numbers 12 and 18

Page 294 Numbers 12 and 18. Change each exponential statement to an equivalent statement involving a logarithm: $\bm{(12)}$ $16=$ 4^2 and (18) $e^{2.2} = M$.

Solution. (12) Since $y = \log_a x$ if and only if $x = a^y$, then with $x = 16$, $a=4$, and $y=2$ we have that $16=4^2$ is equivalent to $\boxed{2=\log_4 16}$.

(18) Since $y = \log_a x$ if and only if $x = a^y$, then with $x = M$, $a = e$, and $y = 2.2$ we have that $e^{2.2} = M$ is equivalent to $\big| 2.2 = \log_e M \big|$.

Page 294 Number 22. Change the logarithmic statement $log_b 4 = 2$ to an equivalent statement involving an exponent.

Solution. Since $y = \log_a x$ if and only if $x = a^y$, then with $a = b$, $x = 4$, and $y = 2$ we have that $\log_b 4 = 2$ is equivalent to $\boxed{b^2 = 4}$.

Page 294 Number 22. Change the logarithmic statement $log_b 4 = 2$ to an equivalent statement involving an exponent.

Solution. Since $y = \log_a x$ if and only if $x = a^y$, then with $a = b$, $x = 4$, and $y = 2$ we have that $\log_b 4 = 2$ is equivalent to $\boxed{b^2 = 4}$.

Page 295 Numbers 30 and 36

Page 295 Numbers 30 and 36. Find the exact value without using a calculator: (30) log $_3(1/9)$ and (36) log $_{\sqrt{3}}$ 9.

Solution. (30) We rewrite the logarithmic equation as an equivalent exponential equation. Since $y = \log_a x$ if and only if $x = a^y$, then with $a=3,\,x=1/9.$ and $y=\log_3(1/9)$ we have that $\log_3(1/9)=y$ is equivalent to 3 $y'=1/9$. Since 3 $y'=1/9=1/3^2=3^{-2}$, then (because exponential functions are one-to-one) we have $|y = \log_3(1/9) = -2$.

Page 295 Numbers 30 and 36

Page 295 Numbers 30 and 36. Find the exact value without using a calculator: (30) log $_3(1/9)$ and (36) log $_{\sqrt{3}}$ 9.

Solution. (30) We rewrite the logarithmic equation as an equivalent exponential equation. Since $y = \log_a x$ if and only if $x = a^y$, then with $a=3,\ x=1/9,$ and $y=\log_3(1/9)$ we have that $\log_3(1/9)=y$ is equivalent to 3 $y'=1/9$. Since 3 $y'=1/9=1/3^2=3^{-2}$, then (because exponential functions are one-to-one) we have $\big|$ $y=$ log $_3(1/9)=-2\big|$.

(36) We rewrite the logarithmic equation as an equivalent exponential equation. Since $y = \log_a x$ if and only if $x = a^y$, then with $a = \sqrt{3}$, $x = 9$, equation. Since $y = \log_a x$ if and only if $x = x$, then with $a = \sqrt{3}$, $x = 9$, and $y = \log_{\sqrt{3}} 9$ we have that $\log_{\sqrt{3}} 9 = y$ is equivalent to $\sqrt{3}^y = 9$. Since √ $\overline{3}^y = 9 = 3^2 = (\sqrt{3}^2)^2 = \sqrt{3}$ $\overline{3}^4$, then (because exponential functions are one-to-one) we have $y = \log_{\sqrt{3}} 9 = 4$.

Page 295 Numbers 30 and 36

Page 295 Numbers 30 and 36. Find the exact value without using a calculator: (30) log $_3(1/9)$ and (36) log $_{\sqrt{3}}$ 9.

Solution. (30) We rewrite the logarithmic equation as an equivalent exponential equation. Since $y = \log_a x$ if and only if $x = a^y$, then with $a=3,\ x=1/9,$ and $y=\log_3(1/9)$ we have that $\log_3(1/9)=y$ is equivalent to 3 $y'=1/9$. Since 3 $y'=1/9=1/3^2=3^{-2}$, then (because exponential functions are one-to-one) we have $\big|$ $y=$ log $_3(1/9)=-2\big|$. П

(36) We rewrite the logarithmic equation as an equivalent exponential equation. Since $y = \log_a x$ if and only if $x = a^y$, then with $a = \sqrt{3}$, $x = 9$, equation. Since $y = \log_a x$ if and only if $x = x$, then with $a = \sqrt{3}$, $x = y$, and $y = \log_{\sqrt{3}} 9$ we have that $\log_{\sqrt{3}} 9 = y$ is equivalent to $\sqrt{3}^y = 9$. Since √ $\sqrt{3}^y = 9 = 3^2 = (\sqrt{3}^2)^2 = \sqrt{3}$ $\overline{3}^4$, then (because exponential functions are one-to-one) we have $\left|y=\log_{\sqrt{3}} 9=4\right|$.

Page 295 Number 48. Find the domain of function $h(x) = \log_3\left(\frac{x}{x-1}\right)$ $x - 1$.

Solution. Since the domain of a logarithm function is $(0,\infty)$ then we need $\frac{x}{x-1} > 0$. As in [4.3. The Graph of a Rational Function,](http://faculty.etsu.edu/gardnerr/1710/notes-Precalculus-10/Sullivan10-4-3.pdf) we divide the real number line into intervals using points where the numerator or denominator of the rational function $R(x) = \frac{x}{x-1}$ is 0. So we remove the points $x = 0$ and $x = 1$ to get the intervals $(-\infty, 0)$, $(0, 1)$, and $(1, \infty)$.

Page 295 Number 48. Find the domain of function $h(x) = \log_3\left(\frac{x}{x-1}\right)$ $x - 1$.

Solution. Since the domain of a logarithm function is $(0,\infty)$ then we need $\frac{x}{x-1} > 0$. As in [4.3. The Graph of a Rational Function,](http://faculty.etsu.edu/gardnerr/1710/notes-Precalculus-10/Sullivan10-4-3.pdf) we divide the real number line into intervals using points where the numerator or denominator of the rational function $R(x) = \frac{x}{x-1}$ is 0. So we remove the points $x = 0$ and $x = 1$ to get the intervals $(-\infty, 0)$, $(0, 1)$, and $(1, \infty)$. Consider

So $\frac{x}{x-1} > 0$ for $\boxed{(-\infty,0) \cup (1,\infty)}$ and this is the domain of h.

Page 295 Number 48. Find the domain of function $h(x) = \log_3\left(\frac{x}{x-1}\right)$ $x - 1$.

Solution. Since the domain of a logarithm function is $(0,\infty)$ then we need $\frac{x}{x-1} > 0$. As in [4.3. The Graph of a Rational Function,](http://faculty.etsu.edu/gardnerr/1710/notes-Precalculus-10/Sullivan10-4-3.pdf) we divide the real number line into intervals using points where the numerator or denominator of the rational function $R(x) = \frac{x}{x-1}$ is 0. So we remove the points $x = 0$ and $x = 1$ to get the intervals $(-\infty, 0)$, $(0, 1)$, and $(1, \infty)$. Consider

So $\frac{x}{x-1}>0$ for $\boxed{(-\infty,0)\cup(1,\infty)}$ and this is the domain of $h.$

Page 295 Number 62. Graph $f(x) = 4^x$ and $f^{-1}(x) = \log_4 x$ on the same set of axes.

Solution. We know the shape of exponential and logarithmic functions, so we simply plot a couple of special points on each and use the asymptotes. Notice that $f(0) = 4^0 = 1$ and $f(1) = 4^1 = 4$, so the points $(0, 1)$ and $(1, 4)$ are on the graph of $y = f(x)$; hence the points $(1, 0)$ and $(4, 1)$ are on the graph of $y = f^{-1}(x)$. $f(x)$ has $y = 0$ as a horizontal asymptote and $f^{-1}(x)$ has a vertical asymptote of $x=0$.

Page 295 Number 62. Graph $f(x) = 4^x$ and $f^{-1}(x) = \log_4 x$ on the same set of axes.

Solution. We know the shape of exponential and logarithmic functions, so we simply plot a couple of special points on each and use the asymptotes. Notice that $f(0) = 4^0 = 1$ and $f(1) = 4^1 = 4$, so the points $(0, 1)$ and $(1, 4)$ are on the graph of $y = f(x)$; hence the points $(1, 0)$ and $(4, 1)$ are on the graph of $y=f^{-1}(x).$ $\ f(x)$ has $y=0$ as a horizontal asymptote and $f^{-1}({\mathsf{x}})$ has a vertical asymptote of ${\mathsf{x}} = 0.$

Page 295 Number 62 (continued)

Solution (continued). The graphs are:

Page 295 Number 66. Match the graph with one of the following functions: **A.** $y = \log_3 x$, **B.** $y = \log_3(-x)$, **C.** $y = 2\log_3(-x)$, **D.** $y = \log_3(-x)$, **E.** $y = \log_3(x) - 1$, **F.** $y = \log_3(x - 1)$, **G.** $y = \log_3(1-x)$, **H.** $y = 1 - \log_3 x$.

Solution. We know that $\log_a x$ has a vertical asymptote of $x = 0$, so a logarithm function will have a vertical asymptote where the argument in the logarithm functions is 0. Hence choices A, B, C, D, E, and H have vertical asymptotes of $x = 0$ and these do not match the given graph.

Page 295 Number 66. Match the graph with one of the following functions: **A.** $y = \log_3 x$, **B.** $y = \log_3(-x)$, **C.** $y = 2\log_3(-x)$, **D.** $y = \log_3(-x)$, **E.** $y = \log_3(x) - 1$, **F.** $y = \log_3(x - 1)$, **G.** $y = \log_3(1-x)$, **H.** $y = 1 - \log_3 x$.

Solution. We know that $\log_a x$ has a vertical asymptote of $x = 0$, so a logarithm function will have a vertical asymptote where the argument in the logarithm functions is 0. Hence choices A, B, C, D, E, and H have vertical asymptotes of $x = 0$ and these do not match the given graph.

Page 295 Number 66 (continued)

Page 295 Number 66. Match the graph with one of the following functions: **A.** $y = \log_3 x$, **B.** $y = \log_3(-x)$, **C.** $y = 2\log_3(-x)$, **D.** $y = \log_3(-x)$, **E.** $y = \log_3(x) - 1$, **F.** $y = \log_3(x - 1)$, **G.** $y = \log_3(1-x)$, **H.** $y = 1 - \log_3 x$.

Solution (continued). Choices F and G both have a vertical asymptote of $x = 1$. The domain of F is $(1, \infty)$ and the domain of G is $(-\infty, 1)$, so the given graph must be for $|y = \log_3(x-1)|$.

Page 295 Number 70. Match the graph with one of the following functions: **A.** $y = \log_3 x$, **B.** $y = \log_3(-x)$, **C.** $y = 2\log_3(-x)$, **D.** $y = \log_3(-x)$, **E.** $y = \log_3(x) - 1$, **F.** $y = \log_3(x - 1)$, **G.** $y = \log_3(1-x)$, **H.** $y = 1 - \log_3 x$.

Solution. The domain of choices B, C, and D are each $(-\infty, 0)$, so these do not match the graph. The domain of F is $(1,\infty)$ and the domain of G is $(-\infty, 1)$, so these do not match the graph. Choices A and E are increasing functions, so these do not match the graph. So the given graph must be for $y = 1 - \log_3 x$.

Page 295 Number 70. Match the graph with one of the following functions: **A.** $y = \log_3 x$, **B.** $y = \log_3(-x)$, **C.** $y = 2\log_3(-x)$, **D.** $y = \log_3(-x)$, **E.** $y = \log_3(x) - 1$, **F.** $y = \log_3(x - 1)$, **G.** $y = \log_3(1-x)$, **H.** $y = 1 - \log_3 x$.

Solution. The domain of choices B, C, and D are each $(-\infty, 0)$, so these do not match the graph. The domain of F is $(1,\infty)$ and the domain of G is $(-\infty, 1)$, so these do not match the graph. Choices A and E are increasing functions, so these do not match the graph. So the given graph must be for $y = 1 - \log_3 x$. () [Precalculus 1 \(Algebra\)](#page-0-0) October 8, 2021 11 / 21

Page 295 Number 74. Consider $f(x) = \ln(x - 3)$. (a) Find the domain of f. (b) Graph f. (c) From the graph, determine the range and any asymptotes of $f.$ (d) Find f^{-1} , the inverse of $f.$ (e) Find the domain and the range of f^{-1} . $(\boldsymbol{\mathsf{f}})$ Graph f^{-1} .

Solution. (a) Logarithmic functions have domains $(0, \infty)$ so we need $x - 3 > 0$ or $x > 3$; the domain of f is $(3, \infty)$.

Page 295 Number 74. Consider $f(x) = \ln(x - 3)$. (a) Find the domain of f. (b) Graph f. (c) From the graph, determine the range and any asymptotes of $f.$ (d) Find f^{-1} , the inverse of $f.$ (e) Find the domain and the range of f^{-1} . $(\boldsymbol{\mathsf{f}})$ Graph f^{-1} .

Solution. (a) Logarithmic functions have domains $(0, \infty)$ so we need $x - 3 > 0$ or $x > 3$; the domain of f is $(3, \infty)$.

(b) We consider $y = \ln x$ and replace x with $x - h = x - 3$, which gives $f(x) = \ln(x - 3)$ as a horizontal shift to the right (since $h = 3 > 0$) by 3 units of $y = \ln x$. Notice $y = \ln x$ contains points (1,0) and (e, 1).

Page 295 Number 74. Consider $f(x) = \ln(x - 3)$. (a) Find the domain of f. (b) Graph f. (c) From the graph, determine the range and any asymptotes of $f.$ (d) Find f^{-1} , the inverse of $f.$ (e) Find the domain and the range of f^{-1} . $(\boldsymbol{\mathsf{f}})$ Graph f^{-1} .

Solution. (a) Logarithmic functions have domains $(0, \infty)$ so we need $x - 3 > 0$ or $x > 3$; the domain of f is $(3, \infty)$.

(b) We consider $y = \ln x$ and replace x with $x - h = x - 3$, which gives $f(x) = \ln(x - 3)$ as a horizontal shift to the right (since $h = 3 > 0$) by 3 units of $y = \ln x$. Notice $y = \ln x$ contains points $(1, 0)$ and $(e, 1)$.

Page 295 Number 74 (continued 1)

Solution (continued). We have:

Page 295 Number 74 (continued 1)

Solution (continued). We have:

Page 295 Number 74 (continued 2)

Page 295 Number 74. Consider $f(x) = \ln(x - 3)$. (a) Find the domain of f. (b) Graph f. (c) From the graph, determine the range and any asymptotes of $f.$ (d) Find f^{-1} , the inverse of $f.$ (e) Find the domain and the range of f^{-1} . $(\boldsymbol{\mathsf{f}})$ Graph f^{-1} . **Solution (continued). (d)** Since $f(x) = \ln(x - 3)$, we write $y = \ln(x - 3)$, interchange x and y to get $x = \ln(y - 3) = \log_e(y - 3)$. We know that $x = \log_e(y-3)$ means $e^x = y - 3$ so that $y = 3 + e^x$ and hence $|f^{-1}(x) = 3 + e^x|$.

(e) The domain of f^{-1} is the same as the range of f and so the domain of f^{-1} is $\mathbb{R} = (-\infty,\infty)$. The range of f^{-1} is the domain of f and so the $|$ range of f^{-1} is $(3,\infty)$.

Page 295 Number 74 (continued 2)

Page 295 Number 74. Consider $f(x) = \ln(x - 3)$. (a) Find the domain of f. (b) Graph f. (c) From the graph, determine the range and any asymptotes of $f.$ (d) Find f^{-1} , the inverse of $f.$ (e) Find the domain and the range of f^{-1} . $(\boldsymbol{\mathsf{f}})$ Graph f^{-1} . **Solution (continued). (d)** Since $f(x) = \ln(x - 3)$, we write $y = \ln(x - 3)$, interchange x and y to get $x = \ln(y - 3) = \log_e(y - 3)$. We know that $x = \log_e(y-3)$ means $e^x = y - 3$ so that $y = 3 + e^x$ and hence $|f^{-1}(x) = 3 + e^x|$.

(e) The domain of f^{-1} is the same as the range of f and so the domain of f^{-1} is $\mathbb{R}=(-\infty,\infty)\big\vert$. The range of f^{-1} is the domain of f and so the $|$ range of f^{-1} is $(3,\infty)$ $|.$

Page 295 Number 74 (continued 3)

Solution (continued). (f) We consider $y = e^x$ and add 3 to e^x , which gives $f^{-1}(x)=3+e^\chi$ as a shift up by 3 units of $y=e^\chi$. Notice $y=e^\chi$ contains points $(0, 1)$ and $(1, e)$:

Page 295 Number 80. Consider $f(x) = \frac{1}{2} \log(x) - 5$. (a) Find the domain of f. (b) Graph f. (c) From the graph, determine the range and any asymptotes of $f.$ (d) Find f^{-1} , the inverse of $f.$ (e) Find the domain and the range of f^{-1} . $(\boldsymbol{\mathsf{f}})$ Graph f^{-1} .

Solution. (a) Logarithmic functions have domains $(0, \infty)$ so the domain of f is $(0, \infty)$.

Page 295 Number 80. Consider $f(x) = \frac{1}{2} \log(x) - 5$. (a) Find the domain of f. (b) Graph f. (c) From the graph, determine the range and any asymptotes of $f.$ (d) Find f^{-1} , the inverse of $f.$ (e) Find the domain and the range of f^{-1} . $(\boldsymbol{\mathsf{f}})$ Graph f^{-1} .

Solution. (a) Logarithmic functions have domains $(0, \infty)$ so the domain of f is $(0, \infty)$.

(b) We consider $y = \log x$ and first multiply $\log x$ by 1/2 which gives a vertical compression by a factor of $1/2$ of $y = \log x$. Second we subtract 5 from $(1/2)$ log x resulting in a vertical shift down by 5 units. So $f(x) = \frac{1}{2} \log(x) - 5$ results from $y = \log x$ by (1) a vertical compression by a factor of 1/2, and (2) a vertical shift down by 5 units. Notice $y = \log x$ contains points $(1, 0)$ and $(10, 1)$.

Page 295 Number 80. Consider $f(x) = \frac{1}{2} \log(x) - 5$. (a) Find the domain of f. (b) Graph f. (c) From the graph, determine the range and any asymptotes of $f.$ (d) Find f^{-1} , the inverse of $f.$ (e) Find the domain and the range of f^{-1} . $(\boldsymbol{\mathsf{f}})$ Graph f^{-1} .

Solution. (a) Logarithmic functions have domains $(0, \infty)$ so the domain of f is $(0, \infty)$.

(b) We consider $y = \log x$ and first multiply $\log x$ by 1/2 which gives a vertical compression by a factor of $1/2$ of $y = \log x$. Second we subtract 5 from $(1/2)$ log x resulting in a vertical shift down by 5 units. So $f(x) = \frac{1}{2} \log(x) - 5$ results from $y = \log x$ by (1) a vertical compression by a factor of $1/2$, and (2) a vertical shift down by 5 units. Notice $y = \log x$ contains points $(1, 0)$ and $(10, 1)$.

Page 295 Number 80 (continued 1)

Solution (continued). We have:

(c) We see from the graph that the range of f is $\mathbb{R} = (-\infty, \infty)$ and the vertical asymptote is $x = 0$. () [Precalculus 1 \(Algebra\)](#page-0-0) October 8, 2021 17 / 21

Page 295 Number 80 (continued 1)

Solution (continued). We have:

(c) We see from the graph that the range of f is $\mathbb{R} = (-\infty, \infty)$ and the vertical asymptote is $x = 0$ () [Precalculus 1 \(Algebra\)](#page-0-0) October 8, 2021 17 / 21

Page 295 Number 80 (continued 2)

Page 295 Number 80. Consider $f(x) = \frac{1}{2} \log(x) - 5$. (a) Find the domain of f. (b) Graph f. (c) From the graph, determine the range and any asymptotes of $f.$ (d) Find f^{-1} , the inverse of $f.$ (e) Find the domain and the range of f^{-1} . $(\boldsymbol{\mathsf{f}})$ Graph f^{-1} .

Solution (continued). (d) Since $f(x) = \frac{1}{2} \log(x) - 5$, we write $y=\frac{1}{2}$ $\frac{1}{2}$ log(x) $-$ 5, interchange x and y to get $x=\frac{1}{2}$ $\frac{1}{2}$ log(y) – 5 = $\frac{1}{2}$ log₁₀(y) – 5, or $x + 5 = \frac{1}{2}$ log₁₀y, or $2(x + 5) = \log_{10} y$. We know that $2(x + 5) = \log_{10} y$ means $10^{2(x+5)} = y$ and hence $\left|f^{-1}(x)=10^{2x+10}\right|.$

(e) The domain of f^{-1} is the same as the range of f and so the domain of f^{-1} is $\mathbb{R} = (-\infty,\infty)$. The range of f^{-1} is the domain of f and so the range of f^{-1} is $(0,\infty)$.

Page 295 Number 80 (continued 2)

Page 295 Number 80. Consider $f(x) = \frac{1}{2} \log(x) - 5$. (a) Find the domain of f. (b) Graph f. (c) From the graph, determine the range and any asymptotes of $f.$ (d) Find f^{-1} , the inverse of $f.$ (e) Find the domain and the range of f^{-1} . $(\boldsymbol{\mathsf{f}})$ Graph f^{-1} .

Solution (continued). (d) Since $f(x) = \frac{1}{2} \log(x) - 5$, we write $y=\frac{1}{2}$ $\frac{1}{2}$ log(x) $-$ 5, interchange x and y to get $x=\frac{1}{2}$ $\frac{1}{2}$ log(y) – 5 = $\frac{1}{2}$ log₁₀(y) – 5, or $x + 5 = \frac{1}{2}$ log₁₀y, or $2(x + 5) = \log_{10} y$. We know that $2(x + 5) = \log_{10} y$ means $10^{2(x+5)} = y$ and hence $\left|f^{-1}(x)=10^{2x+10}\right|.$

(e) The domain of f^{-1} is the same as the range of f and so the domain of f^{-1} is $\mathbb{R}=(-\infty,\infty)\big\vert$. The range of f^{-1} is the domain of f and so the $|$ range of f^{-1} is $(0,\infty)$ $|.$

Page 295 Number 80 (continued 3)

Solution (continued). (f) First, we consider $y = 10^x$ and replace x with $x + 10$, which gives $y = 10^{x+10}$ as a horizontal shift to the left by 10 units of $y=10^\times$. Second, we replace x by $2x$ in $y=10^{\times +10}$, which gives $f(x) = 10^{2x+10}$ which is a horizontal compression by a factor of 2 of $y=10^{\varkappa+10}.$ Notice $y=10^\varkappa$ contains points $(0,1)$ and $(1,10)$:

Page 296 Numbers 90, 96, 102, and 112. Solve the equations: (90) $\log_5 x = 3$, (96) $\ln e^{-2x} = 8$, (102) $e^{-2x} = 1/3$, (112) $4e^{x+1} = 5$.

Solution. Recall that $y = \log_a x$ means $a^y = x$.

Page 296 Numbers 90, 96, 102, and 112. Solve the equations: (90) $\log_5 x = 3$, (96) $\ln e^{-2x} = 8$, (102) $e^{-2x} = 1/3$, (112) $4e^{x+1} = 5$.

Solution. Recall that $y = \log_a x$ means $a^y = x$.

(90) $\log_5 x = 3$ means $5^3 = x$ so that $x = 5^3 = 125$.

Page 296 Numbers 90, 96, 102, and 112. Solve the equations: (90) $\log_5 x = 3$, (96) $\ln e^{-2x} = 8$, (102) $e^{-2x} = 1/3$, (112) $4e^{x+1} = 5$.

Solution. Recall that $y = \log_a x$ means $a^y = x$.

(90)
$$
\log_5 x = 3
$$
 means $5^3 = x$ so that $\boxed{x = 5^3 = 125}$.

(96) The natural log function In can be written log_e so that In $e^{-2x} = 8$ is equivalent to log $_e e^{-2x} = 8$ which means $e^8 = e^{-2x}$ so that (since exponential functions are one-to-one) $8 = -2x$ or $x = -4$.

Page 296 Numbers 90, 96, 102, and 112. Solve the equations: (90) $\log_5 x = 3$, (96) $\ln e^{-2x} = 8$, (102) $e^{-2x} = 1/3$, (112) $4e^{x+1} = 5$.

Solution. Recall that $y = \log_a x$ means $a^y = x$.

(90)
$$
\log_5 x = 3
$$
 means $5^3 = x$ so that $\boxed{x = 5^3 = 125}$.

(96) The natural log function In can be written log_e so that In $e^{-2x} = 8$ is equivalent to log $_{e}$ $e^{-2x} = 8$ which means $e^{8} = e^{-2x}$ so that (since exponential functions are one-to-one) 8 = $-2x$ or $x = -4$.

$$
\frac{(102) e^{-2x} = 1/3 \text{ means } \log_e(1/3) = -2x \text{ so that}}{|x = -(1/2) \log_e(1/3) = -(1/2) \ln(1/3)}.
$$

Page 296 Numbers 90, 96, 102, and 112. Solve the equations: (90) $\log_5 x = 3$, (96) $\ln e^{-2x} = 8$, (102) $e^{-2x} = 1/3$, (112) $4e^{x+1} = 5$.

Solution. Recall that $y = \log_a x$ means $a^y = x$.

(90)
$$
\log_5 x = 3
$$
 means $5^3 = x$ so that $\boxed{x = 5^3 = 125}$.

(96) The natural log function In can be written log_e so that In $e^{-2x} = 8$ is equivalent to log $_{e}$ $e^{-2x} = 8$ which means $e^{8} = e^{-2x}$ so that (since exponential functions are one-to-one) 8 = $-2x$ or $x = -4$.

$$
\frac{(102) e^{-2x} = 1/3 \text{ means } \log_e(1/3) = -2x \text{ so that}}{|x = -(1/2) \log_e(1/3) = -(1/2) \ln(1/3)|}.
$$

(112) We rewrite 4 $e^{x+1} = 5$ as $e^{x+1} = 5/4$ which means $\log_e(5/4) = x + 1$ or $x = \log_e(5/4) - 1 = \ln(5/4) - 1$.

Page 296 Numbers 90, 96, 102, and 112. Solve the equations: (90) $\log_5 x = 3$, (96) $\ln e^{-2x} = 8$, (102) $e^{-2x} = 1/3$, (112) $4e^{x+1} = 5$.

Solution. Recall that $y = \log_a x$ means $a^y = x$.

(90)
$$
\log_5 x = 3
$$
 means $5^3 = x$ so that $\boxed{x = 5^3 = 125}$.

(96) The natural log function In can be written log_e so that In $e^{-2x} = 8$ is equivalent to log $_{e}$ $e^{-2x} = 8$ which means $e^{8} = e^{-2x}$ so that (since exponential functions are one-to-one) 8 = $-2x$ or $x = -4$. П

$$
\frac{(102) e^{-2x} = 1/3 \text{ means } \log_e(1/3) = -2x \text{ so that}}{|x = -(1/2) \log_e(1/3) = -(1/2) \ln(1/3)|}.
$$

 $\left(112\right)$ We rewrite 4 $e^{\varkappa +1}=5$ as $e^{\varkappa +1}=5/4$ which means $\log_e(5/4) = x + 1$ or $\big| x = \log_e(5/4) - 1 = \ln(5/4) - 1 \big|.$

 L

Page 297 Number 124. Between 5:00 pm and 6:00 pm, cars arrive at Jiffy Lube at the rate of 9 cars per hour (0.15 car per minute). The following formula from statistics can be used to determine the probability that a car will arrive within t minutes of 5:00 pm: $F(t) = 1 - e^{-0.15t}$. (a) Determine how many minutes are needed for the probability to reach 50%. (b) Determine how many minutes are needed for the probability to reach 80%.

Solution. (a) We solve $F(t) = 1 - e^{-0.15t} = 0.50 = 1/2$ for t. So we need $e^{-0.15t} = 1/2$ which means $\log_e(1/2) = -0.15t$, or $ln(1/2) = -0.15t$, or $t = -(1/0.15) ln(1/2) \approx 4.621$ minutes.

Page 297 Number 124. Between 5:00 pm and 6:00 pm, cars arrive at Jiffy Lube at the rate of 9 cars per hour (0.15 car per minute). The following formula from statistics can be used to determine the probability that a car will arrive within t minutes of 5:00 pm: $F(t) = 1 - e^{-0.15t}$. (a) Determine how many minutes are needed for the probability to reach 50%. (b) Determine how many minutes are needed for the probability to reach 80%.

Solution. (a) We solve $F(t)=1-e^{-0.15t}=0.50=1/2$ for $t.$ So we need $e^{-0.15t} = 1/2$ which means $\log_e(1/2) = -0.15t$, or $\ln(1/2) = -0.15t$, or $t = -(1/0.15) \ln(1/2) \approx 4.621$ minutes.

(b) We solve $F(t) = 1 - e^{-0.15t} = 0.80 = 4/5$ for t. So we need $e^{-0.15t} = 1/5$ which means $\log_e(1/5) = -0.15t$, or $\ln(1/5) = -0.15t$, or $t = -(1/0.15) \ln(1/5) \approx 10.730$ minutes.

Page 297 Number 124. Between 5:00 pm and 6:00 pm, cars arrive at Jiffy Lube at the rate of 9 cars per hour (0.15 car per minute). The following formula from statistics can be used to determine the probability that a car will arrive within t minutes of 5:00 pm: $F(t) = 1 - e^{-0.15t}$. (a) Determine how many minutes are needed for the probability to reach 50%. (b) Determine how many minutes are needed for the probability to reach 80%.

Solution. (a) We solve $F(t)=1-e^{-0.15t}=0.50=1/2$ for $t.$ So we need $e^{-0.15t} = 1/2$ which means $\log_e(1/2) = -0.15t$, or $\ln(1/2) = -0.15t$, or $t = -(1/0.15) \ln(1/2) \approx 4.621$ minutes. (b) We solve $F(t) = 1 - e^{-0.15t} = 0.80 = 4/5$ for t . So we need $e^{-0.15t} = 1/5$ which means $\log_e(1/5) = -0.15t$, or $\ln(1/5) = -0.15t$, or $|t = -(1/0.15) \ln(1/5) \approx 10.730$ minutes.