Precalculus 1 (Algebra)

Chapter 5. Exponential and Logarithmic Functions

5.5. Properties of Logarithms—Exercises, Examples, Proofs

Precalculus 1 (Algebra)

October 9, 2021

Precalculus 1 (Algebra)

Theorem 5.5.A. Properties of Logarithms (continued 1)

Theorem 5.5.A. Properties of Logarithms. Let M, N, and a be positive real numbers where $a \neq 1$, and r any real number.

- 1. $a^{\log_a M} = M$.
- 2. $\log_{2} a^{r} = r$.

Proof. (1) With $f(x) = a^x$, we have by definition that $f^{-1}(x) = \log_2 x$. For any inverse functions, we have $f(f^{-1}(x)) = x$ for all x in the domain of f^{-1} . Therefore

$$f(f^{-1}(x)) = a^{\log_a x} = x \text{ for all } x > 0.$$

In particular, with x = M > 0 we have $a^{\log_a M} = M$, as claimed.

(2) For any inverse functions, we also have $f^{-1}(f(x)) = x$ for all x in the domain of f. Therefore

$$f^{-1}(f(x)) = \log_a a^x = x$$
 for all real x .

In particular, with x = r we have $\log_a a^r = r$, as claimed.

Theorem 5.5.A. Properties of Logarithms

Theorem 5.5.A. Properties of Logarithms. Let M, N, and a be positive real numbers where $a \neq 1$, and r any real number.

- 1. $a^{\log_a M} = M$.
- 2. $\log_{2} a^{r} = r$.
- 3. The Log of a Product Equals the Sum of the Logs:

$$\log_a(MN) = \log_a M + \log_a N.$$

4. The Log of a Quotient Equals the Difference of the Logs:

$$\log_a(M/N) = \log_a M - \log_a N.$$

5. The Log of a Power Equals the Product of the Power and the Log:

$$\log_a M^r = r \log_a M$$
 and $a^r = e^{r \ln a}$.

October 9, 2021 3 / 19

Theorem 5.5.A. Properties of Logarithms (continued 2)

Theorem 5.5.A. Properties of Logarithms. Let M. N. and a be positive real numbers where $a \neq 1$, and r any real number.

3. The Log of a Product Equals the Sum of the Logs:

$$\log_a(MN) = \log_a M + \log_a N.$$

Proof (continued). (3) Let $A = \log_a M$ and let $B = \log_a N$. Translating these logarithmic expressions into exponential expressions gives $a^A = M$ and $a^B = N$. Then

$$\log_a(MN) = \log_a(a^A a^B) = \log_a a^{A+B}$$
 by Theorem 5.3.A
= $A + B$ by Property 2 of this theorem
= $\log_a M + \log_a N$,

as claimed.

Theorem 5.5.A. Properties of Logarithms (continued 3)

Theorem 5.5.A. Properties of Logarithms. Let M, N, and a be positive real numbers where $a \neq 1$, and r any real number.

4. The Log of a Quotient Equals the Difference of the Logs:

$$\log_a(M/N) = \log_a M - \log_a N.$$

Proof (continued). (4) Let $A = \log_a M$ and let $B = \log_a N$. Translating these logarithmic expressions into exponential expressions gives $a^A = M$ and $a^B = N$. Then

$$\log_a(M/N) = \log_a(a^A/a^B) = \log_a a^{A-B}$$
 by Theorem 5.3.A
= $A - B$ by Property 2 of this theorem
= $\log_a M - \log_a N$,

as claimed. (This also appears as Exercise 5.5.109.)

Precalculus 1 (Algebra)

October 9, 2021 6 / 19

Precalculus 1 (Algebra)

October 9, 2021 7 / 19

Theorem 5.5.A. Properties of Logarithms (continued 5)

Theorem 5.5.A. Properties of Logarithms. Let M. N. and a be positive real numbers where $a \neq 1$, and r any real number.

> 5. The Log of a Power Equals the Product of the Power and the Log:

$$\log_a M^r = r \log_a M$$
 and $a^r = e^{r \ln a}$.

Proof (continued). Next, by (1) of this theorem with a = e (and so \log_a is $\log_e = \ln$), we have $e^{\ln M} = M$. Then

$$e^{\ln a^r} = e^{r \ln a}$$
 by this theorem, the first part of (5)
= $(e^{\ln a})^r$ by Theorem 5.3.A
= a^r by this theorem, part (1), as described above,

as claimed.

Theorem 5.5.A. Properties of Logarithms (continued 4)

Theorem 5.5.A. Properties of Logarithms. Let M, N, and a be positive real numbers where $a \neq 1$, and r any real number.

> 5. The Log of a Power Equals the Product of the Power and the Log:

$$\log_a M^r = r \log_a M$$
 and $a^r = e^{r \ln a}$.

Proof (continued). (5) Let $A = \log_a M$. Translating this logarithmic expression into an exponential expression gives $a^A = M$. Then

$$\log_a M^r = \log_a (a^A)^r = \log_a a^{rA}$$
 by Theorem 5.3.A
= rA by Property 2 of this theorem
= $r \log_a M$,

as claimed.

Page 305 Number 20

Page 305 Number 20. Use properties of logarithms to find the exact value of $\log_6 9 + \log_6 4$.

Solution. Since the log of a product equals the sum of the logs (Theorem 5.5.A(3)), then $\log_6 9 + \log_6 4 = \log_6((9)(4)) = \log_6(36)$ and by Theorem $5.5.A(3) \log_6(36) = \log_6(6^2) = 2$ by Theorem 5.5.A(2)

Page 305 Number 48

of logarithms. Express powers as factors.

Page 305 Number 36

Page 305 Number 36. Suppose that $\ln 2 = a$ and $\ln 3 = b$. Use properties of logarithms to write $\ln \sqrt[4]{2/3}$ in terms of a and b.

Solution. First, $\ln \sqrt[4]{2/3} = \ln ((2/3)^{1/4})$, and by Theorem 5.5.A(5), the log of a power equals the product of the power and the log, $\ln ((2/3)^{1/4}) = \frac{1}{4} \ln (2/3)$. Since the log of a quotient equals the difference of the logs, Theorem 5.5.A(4), then $\frac{1}{4} \ln(2/3) = \frac{1}{4} (\ln 2 - \ln 3)$. So

$$\ln \sqrt[4]{2/3} = \ln \left((2/3)^{1/4} \right) = \frac{1}{4} \ln(2/3) = \frac{1}{4} \left(\ln 2 - \ln 3 \right).$$

Precalculus 1 (Algebra)

With
$$a = \ln 2$$
 and $b = \ln 3$ we then have $\ln \sqrt[4]{2/3} = \frac{1}{4} (\ln 2 - \ln 3) = \boxed{\frac{1}{4} (a - b)}$.

5.5.A(3)), then $\ln (x\sqrt{1+x^2}) = \ln x + \ln \sqrt{1+x^2}$. By Theorem 5.5.A(5), the log of a power equals the product of the power and the log, so $\ln x + \ln \sqrt{1 + x^2} = \ln x + \ln(1 + x^2)^{1/2} = \ln x + \frac{1}{2}\ln(1 + x^2).$

Hence
$$\ln\left(x\sqrt{1+x^2}\right) = \left[\ln x + \frac{1}{2}\ln(1+x^2)\right].$$

Page 305 Number 48. Write $\ln \left(x\sqrt{1+x^2}\right)$ as a sum and/or difference

Solution. Since the log of a product equals the sum of the logs (Theorem

Page 305 Number 56

Page 305 Number 56. Write $\ln \left(\frac{5x^2\sqrt[3]{1-x}}{4(x+1)^2} \right)$, where 0 < x < 1, as a sum and/or difference of logarithms. Express powers as factors.

Solution. Applying the parts of Theorem 5.5.A, we have

$$\ln\left(\frac{5x^2\sqrt[3]{1-x}}{4(x+1)^2}\right) = \ln(5x^2\sqrt[3]{1-x}) - \ln(4(x+1)^2) \text{ by Theorem 5.5.A(4)}$$

$$= \ln 5 + \ln x^2 + \ln \sqrt[3]{1-x} - (\ln 4 + \ln(x+1)^2)$$

$$= \ln 5 + \ln x^2 + \ln(1-x)^{1/3} - (\ln 4 + \ln(x+1)^2)$$

$$= \ln 5 + 2\ln x + \frac{1}{3}\ln(1-x) - \ln 4 - 2\ln(x+1)$$
by Theorem 5.5.A(5).

Page 305 Numbers 62 and 70

Page 305 Numbers 62 and 70. Write each expression as a single logarithm: **(62)** $\log(x^2 + 3x + 2) - 2\log(x + 1)$ and (70) $3\log_5(3x+1) - 2\log_5(2x-1) - \log_5 x$.

Solution. (62) Applying the parts of Theorem 5.5.A, we have

$$\log(x^{2} + 3x + 2) - 2\log(x + 1) = \log(x^{2} + 3x + 2) - \log(x + 1)^{2}$$
by Theorem 5.5.A(5)
$$= \log \frac{x^{2} + 3x + 2}{(x + 1)^{2}} \text{ by Theorem 5.5.A(4)}$$

$$= \log \frac{(x + 2)(x + 1)}{(x + 1)^{2}} = \log \frac{x + 2}{x + 1}.$$

October 9, 2021

Precalculus 1 (Algebra)

October 9, 2021

October 9, 2021

Precalculus 1 (Algebra)

October 9, 2021

Page 305 Numbers 62 and 70

Page 305 Numbers 62 and 70 (continued)

Page 305 Numbers 62 and 70. Write each expression as a single logarithm: **(62)** $\log(x^2 + 3x + 2) - 2\log(x + 1)$ and **(70)** $3\log_5(3x + 1) - 2\log_5(2x - 1) - \log_5 x$.

Solution (continued). (70) Applying the parts of Theorem 5.5.A, we have

$$3 \log_5(3x+1) - 2 \log_5(2x-1) - \log_5 x$$

$$= \log_5(3x+1)^3 - \log_5(2x-1)^2 - \log_5 x$$
by Theorem 5.5.A(5)
$$= \log_5 \frac{(3x+1)^3}{(2x-1)^2} - \log_5 x \text{ by Theorem 5.5.A(4)}$$

$$= \log_5 \frac{(3x+1)^3}{x(2x-1)^2} \text{ by Theorem 5.5.A(4)}.$$

Precalculus 1 (Algebra)

Page 206 Number 73

Page 306 Number 72

Page 306 Number 72. Use the Change-of-Base Formula and a calculator to evaluate log_5 18. Round your answer to three decimal places.

Solution. The Change-of-Base Formula (Theorem 5.5.C) states $\log_a M = \frac{\log_b M}{\log_b a}$. We choose b=e and have a=5 and M=18 to get

$$\log_5 18 = \frac{\log_e 18}{\log_e 5} = \frac{\ln 18}{\ln 5} \approx \frac{2.890371758}{1.609437912} \approx \boxed{1.796}.$$

Theorem 5.5.C. Change-of-Base Formula

Theorem 5.5.C. Change-of-Base Formula

Theorem 5.5.C. Change-of-Base Formula. If $a \neq 1$, $b \neq 1$, and M are positive real numbers, then $\log_a M = \frac{\log_b M}{\log_b a}$.

Proof. Let $y = \log_a M$. Translating this logarithmic expression into an exponential expression gives $a^y = M$. Then

$$\log_b a^y = \log_b M$$
, and $y \log_b a = \log_b M$ by Theorem 5.5.A(5), and so $y = \frac{\log_b M}{\log_b a}$, or $\log_a M = \frac{\log_b M}{\log_b a}$,

as claimed.

14 / 19

October 9, 2021

Precalculus 1 (Algebra) October 9, 2021 15 / 1

Page 306 Number 9

Page 306 Number 98

Page 306 Number 98. Find the value of $\log_2 4 \log_4 6 \log_6 8$.

Solution. The Change-of-Base Formula (Theorem 5.5.C) states $\log_a M = \frac{\log_b M}{\log_b a}$. We change the base of each logarithm to e to get

$$\log_2 4 \log_4 6 \log_6 8 = \frac{\ln 4}{\ln 2} \frac{\ln 6}{\ln 4} \frac{\ln 8}{\ln 6} = \frac{\ln 8}{\ln 2} = \frac{\ln 2^3}{\ln 2} = \frac{3 \ln 2}{\ln 2} = \boxed{3},$$

where the second to last equality is justified by Theorem 5.5.A(5).

 Precalculus 1 (Algebra)
 October 9, 2021
 16 / 19
 ()
 Precalculus 1 (Algebra)
 October 9, 2021
 17 / 19

Page 306 Number 102

Page 306 Number 102. Show that

$$\log_a \left(\sqrt{x} + \sqrt{x - 1} \right) + \log_a \left(\sqrt{x} - \sqrt{x - 1} \right) = 0.$$

Solution. We have

$$\log_{a}\left(\sqrt{x}+\sqrt{x-1}\right)+\log_{a}\left(\sqrt{x}-\sqrt{x-1}\right)$$

$$\begin{split} &= & \log_a \left(\left(\sqrt{x} + \sqrt{x-1} \right) \left(\frac{\sqrt{x} - \sqrt{x-1}}{\sqrt{x} - \sqrt{x-1}} \right) \right) \\ &+ \log_a \left(\left(\sqrt{x} - \sqrt{x-1} \right) \left(\frac{\sqrt{x} + \sqrt{x-1}}{\sqrt{x} + \sqrt{x-1}} \right) \right) \\ &= & \log_a \left(\frac{x - (x-1)}{\sqrt{x} - \sqrt{x-1}} \right) + \log_a \left(\frac{x - (x-1)}{\sqrt{x} + \sqrt{x-1}} \right) \\ &= & \log_a \left(\frac{1}{\sqrt{x} - \sqrt{x-1}} \right) + \log_a \left(\frac{1}{\sqrt{x} + \sqrt{x-1}} \right) \end{split}$$

Page 306 Number 102 (continued)

Page 306 Number 102. Show that

$$\log_a\left(\sqrt{x} + \sqrt{x-1}\right) + \log_a\left(\sqrt{x} - \sqrt{x-1}\right) = 0.$$

Solution (continued).

$$= \log_a \left(\frac{1}{\sqrt{x} - \sqrt{x - 1}} \frac{1}{\sqrt{x} + \sqrt{x - 1}} \right) \text{ by Theorem 5.5.A(3)}$$

$$= \log_a \left(\frac{1}{x - (x - 1)} \right)$$

$$= \log_a \frac{1}{1} = \log_a 1 = 0 \text{ since } a^0 = 1,$$

Precalculus 1 (Algebra)

October 9, 2021

as claimed.