Precalculus 1 (Algebra)

Chapter 5. Exponential and Logarithmic Functions 5.6. Logarithmic and Exponential Equations—Exercises, Examples, Proofs

Table of contents

- Page 311 Number 10
- 2 Page 311 Number 18
- 3 Page 311 Number 40
- 4 Page 311 Number 44
- 5 Page 312 Number 60
- 6 Page 312 Number 96
- Page 313 Number 106. A Population Model

Page 311 Number 10. Solve $\log_5(2x+3) = \log_5 3$.

Solution. By Theorem 5.5.A(1), $a^{\log_a M} = M$, so to eliminate the logarithms base 5 we make both sides exponents of 5 (that is, we take the equal sides as inputs into the base 5 exponential function 5^x): $5^{\log_5(2x+3)} = 5^{\log_5 3}$, or 2x + 3 = 3, or 2x = 0, or x = 0. Notice that x = 0 is in fact in the domain of both log functions.

Page 311 Number 10. Solve $\log_5(2x+3) = \log_5 3$.

Solution. By Theorem 5.5.A(1), $a^{\log_a M} = M$, so to eliminate the logarithms base 5 we make both sides exponents of 5 (that is, we take the equal sides as inputs into the base 5 exponential function 5^x): $5^{\log_5(2x+3)} = 5^{\log_5 3}$, or 2x + 3 = 3, or 2x = 0, or x = 0. Notice that x = 0 is in fact in the domain of both log functions.

Page 311 Number 18. Solve: $\log x + \log(x - 21) = 2$.

Solution. By Theorem 5.5.A(3), $\log x + \log(x - 21) = \log(x(x - 21)) = \log(x^2 - 21x)$. So we need $\log(x^2 - 21x) = 2$ and to eliminate the common logarithm function (i.e., the base 10 logarithm) we make both sides exponents of 10 to get: $10^{\log(x^2-21x)} = 10^2$, or $x^2 - 21x = 100$, or $x^2 - 21x - 100 = 0$, or (x - 25)(x + 4) = 0, or x = -4 and x = 25.

Page 311 Number 18. Solve: $\log x + \log(x - 21) = 2$.

Solution. By Theorem 5.5.A(3), log $x + \log(x - 21) = \log(x(x - 21)) = \log(x^2 - 21x)$. So we need log $(x^2 - 21x) = 2$ and to eliminate the common logarithm function (i.e., the base 10 logarithm) we make both sides exponents of 10 to get: $10^{\log(x^2-21x)} = 10^2$, or $x^2 - 21x = 100$, or $x^2 - 21x - 100 = 0$, or (x - 25)(x + 4) = 0, or x = -4 and x = 25. Notice that x = 25 is in the domain of both log functions, but x = -4 is in the domain of neither. So we must have x = 25.

Page 311 Number 18. Solve: $\log x + \log(x - 21) = 2$.

Solution. By Theorem 5.5.A(3), log $x + \log(x - 21) = \log(x(x - 21)) = \log(x^2 - 21x)$. So we need $\log(x^2 - 21x) = 2$ and to eliminate the common logarithm function (i.e., the base 10 logarithm) we make both sides exponents of 10 to get: $10^{\log(x^2-21x)} = 10^2$, or $x^2 - 21x = 100$, or $x^2 - 21x - 100 = 0$, or (x - 25)(x + 4) = 0, or x = -4 and x = 25. Notice that x = 25 is in the domain of both log functions, but x = -4 is in the domain of neither. So we must have x = 25.

Page 311 Number 40. Solve $\ln x - 3\sqrt{\ln x} + 2 = 0$.

Solution. Here, we introduce variable $u = \sqrt{\ln x}$ so that $\ln x - 3\sqrt{\ln x} + 2 = 0$ becomes the quadratic equation $u^2 - 3u + 2 = 0$ or (u - 1)(u - 2) = 0. So we need u = 1 or u = 2.

Page 311 Number 40. Solve $\ln x - 3\sqrt{\ln x} + 2 = 0$.

Solution. Here, we introduce variable $u = \sqrt{\ln x}$ so that $\ln x - 3\sqrt{\ln x} + 2 = 0$ becomes the quadratic equation $u^2 - 3u + 2 = 0$ or (u-1)(u-2) = 0. So we need u = 1 or u = 2. That is, we need $1 = u = \sqrt{\ln x}$ or $2 = u = \sqrt{\ln x}$, or $\ln x = 1$ or $\ln x = 4$. Hence, we take $e^{\ln x} = e^1$ or $e^{\ln x} = e^4$, which gives x = e and $x = e^4$. Notice that these are, in fact, both solutions to the given equation. So the solution set is $[e, e^4]$.

Page 311 Number 40. Solve $\ln x - 3\sqrt{\ln x} + 2 = 0$.

Solution. Here, we introduce variable $u = \sqrt{\ln x}$ so that $\ln x - 3\sqrt{\ln x} + 2 = 0$ becomes the quadratic equation $u^2 - 3u + 2 = 0$ or (u-1)(u-2) = 0. So we need u = 1 or u = 2. That is, we need $1 = u = \sqrt{\ln x}$ or $2 = u = \sqrt{\ln x}$, or $\ln x = 1$ or $\ln x = 4$. Hence, we take $e^{\ln x} = e^1$ or $e^{\ln x} = e^4$, which gives x = e and $x = e^4$. Notice that these are, in fact, both solutions to the given equation. So the solution set is $[\{e, e^4\}]$.

Page 311 Number 44. Solve $3^{x} = 14$.

Solution. We take a natural logarithm of both sides to get $\ln 3^x = \ln 14$ or, by Theorem 5.5.A(5), $x \ln 3 = \ln 14$, or $x = \frac{\ln 14}{\ln 3} \approx 2.402$.

Page 311 Number 44. Solve $3^{\times} = 14$.

Solution. We take a natural logarithm of both sides to get $\ln 3^x = \ln 14$ or, by Theorem 5.5.A(5), $x \ln 3 = \ln 14$, or $x = \frac{\ln 14}{\ln 3} \approx 2.402$.

Page 312 Number 60. Solve $2^{2x} + 2^{x+2} - 12 = 0$.

Solution. We rewrite $2^{2x} + 2^{x+2} - 12 = 0$ as $(2^x)^2 + 2^2 2^x - 12 = 0$ or $(2^x)^2 + 4(2^x) - 12 = 0$. We introduce variable $u = 2^x$ so that the equation becomes $u^2 + 4u - 12 = 0$, or (u+6)(u-2) = 0, or $2^x = u = -6$ and $2^x = u = 2$.

Page 312 Number 60. Solve $2^{2x} + 2^{x+2} - 12 = 0$.

Solution. We rewrite $2^{2x} + 2^{x+2} - 12 = 0$ as $(2^x)^2 + 2^2 2^x - 12 = 0$ or $(2^x)^2 + 4(2^x) - 12 = 0$. We introduce variable $u = 2^x$ so that the equation becomes $u^2 + 4u - 12 = 0$, or (u+6)(u-2) = 0, or $2^x = u = -6$ and $2^x = u = 2$. Since $2^x > 0$ then there is no x for which $2^x = -6$, but $2^x = 2$ implies x = 1. So the solution is x = 1.

Page 312 Number 60. Solve $2^{2x} + 2^{x+2} - 12 = 0$.

Solution. We rewrite $2^{2x} + 2^{x+2} - 12 = 0$ as $(2^x)^2 + 2^2 2^x - 12 = 0$ or $(2^x)^2 + 4(2^x) - 12 = 0$. We introduce variable $u = 2^x$ so that the equation becomes $u^2 + 4u - 12 = 0$, or (u + 6)(u - 2) = 0, or $2^x = u = -6$ and $2^x = u = 2$. Since $2^x > 0$ then there is no x for which $2^x = -6$, but $2^x = 2$ implies x = 1. So the solution is x = 1.

Page 312 Number 96. Let $f(x) = \log_3(x+5)$ and $g(x) = \log_3(x-1)$. (a) Solve f(x) = 2. What point is on the graph of f? (b) Solve g(x) = 3. What point is on the graph of g? (c) Solve f(x) = g(x). Do the graphs of f and g intersect? If so, where? (d) Solve (f + g)(x) = 3. (e) (f - g)(x) = 2.

Solution. (a) To solve f(x) = 2, we consider $f(x) = \log_3(x+5) = 2$. Exponentiating base 3 gives $3^{\log_3(x+5)} = 3^2$ or, by Theorem 5.5.A(1), x + 5 = 9, or x = 4. So the

point (4, f(4)) = (4, 2) is on the graph of f.

Page 312 Number 96. Let $f(x) = \log_3(x+5)$ and $g(x) = \log_3(x-1)$. (a) Solve f(x) = 2. What point is on the graph of f? (b) Solve g(x) = 3. What point is on the graph of g? (c) Solve f(x) = g(x). Do the graphs of f and g intersect? If so, where? (d) Solve (f + g)(x) = 3. (e) (f - g)(x) = 2.

Solution. (a) To solve f(x) = 2, we consider $f(x) = \log_3(x+5) = 2$. Exponentiating base 3 gives $3^{\log_3(x+5)} = 3^2$ or, by Theorem 5.5.A(1), x + 5 = 9, or x = 4. So the

point (4, f(4)) = (4, 2) is on the graph of f.

(b) To solve g(x) = 3, we consider $g(x) = \log_3(x-1) = 3$. Exponentiating base 3 gives $3^{\log_3(x-1)} = 3^3$, or x - 1 = 27, or x = 28. So the point (28, g(28)) = (28, 3) is on the graph of g.

Page 312 Number 96. Let $f(x) = \log_3(x+5)$ and $g(x) = \log_3(x-1)$. (a) Solve f(x) = 2. What point is on the graph of f? (b) Solve g(x) = 3. What point is on the graph of g? (c) Solve f(x) = g(x). Do the graphs of f and g intersect? If so, where? (d) Solve (f + g)(x) = 3. (e) (f - g)(x) = 2.

Solution. (a) To solve f(x) = 2, we consider $f(x) = \log_3(x+5) = 2$. Exponentiating base 3 gives $3^{\log_3(x+5)} = 3^2$ or, by Theorem 5.5.A(1), x+5=9, or x=4. So the

point (4, f(4)) = (4, 2) is on the graph of f.

(b) To solve g(x) = 3, we consider $g(x) = \log_3(x-1) = 3$. Exponentiating base 3 gives $3^{\log_3(x-1)} = 3^3$, or x - 1 = 27, or x = 28. So the point (28, g(28)) = (28, 3) is on the graph of g.

Page 312 Number 96 (continued 1)

Page 312 Number 96. Let $f(x) = \log_3(x+5)$ and $g(x) = \log_3(x-1)$. (c) Solve f(x) = g(x). Do the graphs of f and g intersect? If so, where? (d) Solve (f+g)(x) = 3. (e) (f-g)(x) = 2.

Solution (continued). (c) To solve f(x) = g(x), we consider $f(x) = \log_3(x+5) = \log_3(x-1) = g(x)$. Exponentiating base 3 gives $3^{\log_3(x+5)} = 3^{\log_3(x-1)}$, or x+5 = x-1, or 0 = 6; since this is certainly false then there is no such x and the equation has no solution. Since the function values of f(x) and g(x) are never equal for a given x value (that is, $(x, f(x)) \neq (x, g(x))$ for all x in the domains of f and g), then the graphs of f and g do not intersect.

Page 312 Number 96 (continued 1)

Page 312 Number 96. Let $f(x) = \log_3(x+5)$ and $g(x) = \log_3(x-1)$. (c) Solve f(x) = g(x). Do the graphs of f and g intersect? If so, where? (d) Solve (f+g)(x) = 3. (e) (f-g)(x) = 2.

Solution (continued). (c) To solve f(x) = g(x), we consider $f(x) = \log_3(x+5) = \log_3(x-1) = g(x)$. Exponentiating base 3 gives $3^{\log_3(x+5)} = 3^{\log_3(x-1)}$, or x+5 = x-1, or 0 = 6; since this is certainly false then there is no such x and the equation has no solution. Since the function values of f(x) and g(x) are never equal for a given x value (that is, $(x, f(x)) \neq (x, g(x))$ for all x in the domains of f and g), then the graphs of f and g do not intersect.

Page 312 Number 96 (continued 2)

Page 312 Number 96. Let $f(x) = \log_3(x+5)$ and $g(x) = \log_3(x-1)$. (d) Solve (f+g)(x) = 3. (e) (f-g)(x) = 2. Solution (continued). (d) To solve (f+g)(x) = 3 we observe that $(f+g)(x) = \log_3(x+5) + \log_3(x-1) = \log_3((x+5)(x-1))$ (by Theorem 5.5.A(3)), so we consider $\log_3((x+5)(x-1)) = 3$. Exponentiating base 3 gives $3^{\log_3((x+5)(x-1))} = 3^3$, or (x+5)(x-1) = 27, or $x^2 + 4x - 5 = 27$, or $x^2 + 4x - 32 = 0$, or (x+8)(x-4) = 0, or x = -8 and x = 4. But notice that x = -8 is not in the domain of either f or g, so the solution is x = 4.

Page 312 Number 96 (continued 2)

Page 312 Number 96. Let $f(x) = \log_3(x+5)$ and $g(x) = \log_3(x-1)$. (d) Solve (f + g)(x) = 3. (e) (f - g)(x) = 2. **Solution (continued).** (d) To solve (f + g)(x) = 3 we observe that $(f+g)(x) = \log_3(x+5) + \log_3(x-1) = \log_3((x+5)(x-1))$ (by Theorem 5.5.A(3)), so we consider $\log_3((x+5)(x-1)) = 3$. Exponentiating base 3 gives $3^{\log_3((x+5)(x-1))} = 3^3$, or (x+5)(x-1) = 27, or $x^2 + 4x - 5 = 27$, or $x^2 + 4x - 32 = 0$, or (x + 8)(x - 4) = 0, or x = -8 and x = 4. But notice that x = -8 is not in the domain of either f or g, so the solution is |x = 4|. (e) To solve (f - g)(x) = 2 we observe that $(f-g)(x) = \log_3(x+5) - \log_3(x-1) = \log_3\left(\frac{x+5}{x-1}\right)$ (by Theorem 5.5.A(4)), so we consider $\log_3((x+5)/(x-1)) = 2$. Exponentiating base 3 gives $3^{\log_3((x+5)/(x-1))} = 3^2$, or (x+5)/(x-1) = 9, or x+5 = 9(x-1)where $x \neq 1$, or x + 5 = 9x - 9, or 8x = 14, or |x = 14/8 = 7/4|.

Page 312 Number 96 (continued 2)

Page 312 Number 96. Let $f(x) = \log_3(x+5)$ and $g(x) = \log_3(x-1)$. (d) Solve (f + g)(x) = 3. (e) (f - g)(x) = 2. **Solution (continued). (d)** To solve (f + g)(x) = 3 we observe that $(f+g)(x) = \log_3(x+5) + \log_3(x-1) = \log_3((x+5)(x-1))$ (by Theorem 5.5.A(3)), so we consider $\log_3((x+5)(x-1)) = 3$. Exponentiating base 3 gives $3^{\log_3((x+5)(x-1))} = 3^3$, or (x+5)(x-1) = 27, or $x^2 + 4x - 5 = 27$, or $x^2 + 4x - 32 = 0$, or (x + 8)(x - 4) = 0, or x = -8 and x = 4. But notice that x = -8 is not in the domain of either f or g, so the solution is |x = 4|. (e) To solve (f - g)(x) = 2 we observe that $(f-g)(x) = \log_3(x+5) - \log_3(x-1) = \log_3\left(\frac{x+5}{x-1}\right)$ (by Theorem 5.5.A(4)), so we consider $\log_3((x+5)/(x-1)) = 2$. Exponentiating base 3 gives $3^{\log_3((x+5)/(x-1))} = 3^2$, or (x+5)/(x-1) = 9, or x+5 = 9(x-1)where $x \neq 1$, or x + 5 = 9x - 9, or 8x = 14, or |x = 14/8 = 7/4|.

Page 313 Number 106. The population of the world in 2014 was 7.14 billion people and was growing at a rate of 1.1% per year. Assuming that this growth rate continues, the model $P(t) = 7.14(1.011)^{t-2014}$ represents the population P (in billions of people) in year t. (a) According to this model, when will the population of the world be 9 billion people? (b) According to this model, when will the population of the world be 12.5 billion people?

Solution. (a) We set P(t) = 9 and solve for t: $P(t) = 7.14(1.011)^{t-2014} = 9$. We take natural logarithms of both sides of this equation to get

$$\ln(7.14(1.011)^{t-2014}) = \ln 9$$
, or $\ln 7.14 + \ln(1.011)^{t-2014} = \ln 9$,

or $\ln 7.14 + (t - 2014) \ln 1.011 = \ln 9$, or $(t - 2014) \ln 1.011 = \ln 9 - \ln 7.14$, or $t - 2014 = (\ln 9 - \ln 7.14) / \ln 1.011$, or $t = 2014 + (\ln 9 - \ln 7.14) / \ln 1.011$.

Page 313 Number 106. The population of the world in 2014 was 7.14 billion people and was growing at a rate of 1.1% per year. Assuming that this growth rate continues, the model $P(t) = 7.14(1.011)^{t-2014}$ represents the population P (in billions of people) in year t. (a) According to this model, when will the population of the world be 9 billion people? (b) According to this model, when will the population of the world be 12.5 billion people?

Solution. (a) We set P(t) = 9 and solve for t: $P(t) = 7.14(1.011)^{t-2014} = 9$. We take natural logarithms of both sides of this equation to get

$$\ln\left(7.14(1.011)^{t-2014}
ight) = \ln 9, \,\, {
m or} \,\, \ln 7.14 + \ln(1.011)^{t-2014} = \ln 9,$$

or $\ln 7.14 + (t - 2014) \ln 1.011 = \ln 9$, or $(t - 2014) \ln 1.011 = \ln 9 - \ln 7.14$,

or $t - 2014 = (\ln 9 - \ln 7.14) / \ln 1.011$, or $t = 2014 + (\ln 9 - \ln 7.14) / \ln 1.011$.

Page 313 Number 106 (continued)

Solution (continued). So $t = 2014 + (\ln 9 - \ln 7.14) / \ln 1.011 \approx 2014 + 21.162 = 2035.162$, so the population will reach 9 billion in the year 2035.

(b) We set P(t) = 12.5 and solve for t: $P(t) = 7.14(1.011)^{t-2014} = 12.5$. We take natural logarithms of both sides of this equation to get

$$\ln (7.14(1.011)^{t-2014}) = \ln 12.5$$
, or $\ln 7.14 + \ln (1.011)^{t-2014} = \ln 12.5$,

or $\ln 7.14 + (t - 2014) \ln 1.011 = \ln 12.5$,

or $(t - 2014) \ln 1.011 = \ln 12.5 - \ln 7.14$,

or $t - 2014 = (\ln 12.5 - \ln 7.14) / \ln 1.011$,

or $t = 2014 + (\ln 12.5 - \ln 7.14) / \ln 1.011$.

So $t = 2014 + (\ln 12.5 - \ln 7.14) / \ln 1.011 \approx 2014 + 51.190 = 2065.190$, so the population will reach 12.5 billion in the year 2065.

Page 313 Number 106 (continued)

Solution (continued). So $t = 2014 + (\ln 9 - \ln 7.14) / \ln 1.011 \approx 2014 + 21.162 = 2035.162$, so the population will reach 9 billion in the year 2035.

(b) We set P(t) = 12.5 and solve for t: $P(t) = 7.14(1.011)^{t-2014} = 12.5$. We take natural logarithms of both sides of this equation to get

$$\ln (7.14(1.011)^{t-2014}) = \ln 12.5, \text{ or } \ln 7.14 + \ln(1.011)^{t-2014} = \ln 12.5,$$

or $\ln 7.14 + (t - 2014) \ln 1.011 = \ln 12.5,$
or $(t - 2014) \ln 1.011 = \ln 12.5 - \ln 7.14,$
or $t - 2014 = (\ln 12.5 - \ln 7.14) / \ln 1.011,$
or $t = 2014 + (\ln 12.5 - \ln 7.14) / \ln 1.011.$
So $t = 2014 + (\ln 12.5 - \ln 7.14) / \ln 1.011 \approx 2014 + 51.190 = 2065.190,$
so the population will reach 12.5 billion in the year 2065.