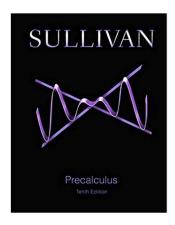
Precalculus 1 (Algebra)

Appendix A. Review

A.1. Algebra Essentials—Exercises, Examples, Proofs



Precalculus 1 (Algebra)

August 13, 2021

Page A11 Numbers 42 and 44

Page A11 Numbers 42 and 44. Graph the numbers x on the real number line which satisfy (42) x > -2, and (44) (modified) x < 7.

Solution. (42) To graph all x where x > -2, we graph x = -2 with a solid disk and shade the real number line to the right of -2:

(44) To graph all x where x < 7, we graph x = 7 with a circle (since the inequality is strict) and shade the real number line to the left of 7:

Page A11 Numbers 12, 14, 18, 22

Page A11 Numbers 12, 14, 18, 22. Let the universal set be $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and let $A = \{1, 3, 4, 5, 9\}$, $B = \{2, 4, 6, 7, 8\}$, and $C = \{1, 3, 4, 6\}$. Find **(12)** $A \cup C$, **(14)** $A \cap C$, **(18)** $\overline{C} = C^c$, and (22) $\overline{B} \cap \overline{C} = B^c \cap C^c$.

Solution. (12) By definition, the union of two sets is the set consisting of elements that belong to either set (or both sets). So

$$A \cup C = \{1, 3, 4, 5, 9\} \cup \{1, 3, 4, 6\} = \boxed{\{1, 3, 4, 5, 6, 9\}}.$$

(14) By definition, the intersection of two sets is the set consisting of elements that belong to both sets. So

$$A \cap C = \{1, 3, 4, 5, 9\} \cap \{1, 3, 4, 6\} = \boxed{\{1, 3, 4\}}.$$

(18) By definition, the complement of a set is the set consisting of all elements in the universal set that are not in the given set. So $\overline{C} = C^c = \{0, 2, 5, 7, 8, 9\}.$

(22) Similar to (18), we have $\overline{B} = B^c = \{0, 1, 3, 5, 9\}$. So

$$\overline{B} \cap \overline{C} = B^c \cap C^c = \{0, 1, 3, 5, 9\} \cap \{0, 2, 5, 7, 8, 9\} = \boxed{\{0, 5, 9\}}.$$

Precalculus 1 (Algebra) August 13, 2021 3 / 10

Page A11 Numbers 46, 48, and 50

Page A11 Numbers 46, 48, and 50. Use the given real number line to compute each distance: (46) d(C, A), (48) d(C, E), and (50) d(D, B).

Solution. First, the coordinate of A is $x_A = -3$, the coordinate of B is $x_B = -1$, the coordinate of C is $x_C = 0$, the coordinate of D is $x_D = 1$, and the coordinate of E is $x_E = 3$. So by the definition of the distance between two points on the real number line in terms of coordinates, we have the following.

(46)
$$d(C,A) = |x_A - x_C| = |(-3) - (0)| = |-3| = \boxed{3}.$$

(48)
$$d(C, E) = |x_E - x_C| = |(3) - (0)| = |3| = \boxed{3}.$$

(50)
$$d(D,B) = |x_B - x_D| = |(-1) - (1)| = |-2| = \boxed{2}$$
.

Page A11 Numbers 52 and 54, Page A12 numbers 64 and 68

Page A11 Numbers 52 and 54, Page A12 numbers 64 and 68.

Evaluate each expression if x = -2 and y = 3: (52) 3x + y.

(54)
$$-2x + xy$$
, **(64)** $|y|/y$, and **(68)** $3|x| + 2|y|$.

Solution. We substitute the given values for x and y.

(52)
$$3x + y = 3(-2) + (3) = -6 + 3 = \boxed{-3}$$
.

(54)
$$-2x + xy = -2(-2) + (-2)(3) = 4 - 6 = \boxed{-2}.$$

(64)
$$|y|/y = |(3)|/(3) = 3/3 = \boxed{1}$$
. Notice that $|x|/x = |(-2)|/(-2) = 2/(-2) = \boxed{-1}$.

(68)
$$3|x| + 2|y| = 3|(-2)| + 2|(3)| = 3(2) + 2(3) = 6 + 6 = \boxed{12}.$$

Precalculus 1 (Algebra)

Precalculus 1 (Algebra)

August 13, 2021 7 / 10

Page A12 Number 74 (continued)

Page A12 Number 74. Determine which of the values (a) x = 3, (b) x = 1, (c) x = 0, (d) x = -1, is in the domain of variable x in the expression $\frac{x^3}{x^2-1}$.

Solution (continued). Notice that for x = 0,

$$\frac{x^3}{x^2 - 1} = \frac{(0)^3}{(0)^2 - 1} = \frac{0}{-1} = 0$$
 and so $x = 0$ is in the domain of the expression.

Notice that for x = -1, $x^2 - 1 = (-1)^2 - 1 = 1 - 1 = 0$ and since the expression $x^2 - 1$ is in the denominator of the given expression, then x = -1 would produce division by 0 in the given expression so that x = -1 is not in the domain of the given expression.

So of the given values, x = 3 and x = 0 are in the domain of the expression.

Page A12 Number 74. Determine which of the values (a) x = 3, (b) x = 1, (c) x = 0, (d) x = -1, is in the domain of variable x in the expression $\frac{x^3}{x^2-1}$.

Solution. Since the expression involves division, we must avoid division by 0 by Note A.1.D.

Notice that for x = 3, $\frac{x^3}{x^2 - 1} = \frac{(3)^3}{(3)^2 - 1} = \frac{27}{8}$ and so x = 3 is in the domain of the expression

Notice that for x = 1, $x^2 - 1 = (1)^2 - 1 = 1 - 1 = 0$ and since the expression $x^2 - 1$ is in the denominator of the given expression, then x = 1would produce division by 0 in the given expression so that x=1 is not in the domain of the given expression.

Page A12 Number 80

Page A12 Number 80. Determine the domain of the variable x in the expression $\frac{x-2}{x-6}$.

Solution. As observed in Note A.1.D, at this stage the algebraic manipulations which must be avoided are division by 0 and square roots of negatives. In the given expression, there are no square roots but there is division. So we find the "bad" value(s) of x by setting the denominator of the expression equal to 0: x - 6 = 0 or x = 6. So the domain of x is all real numbers except for 6

Page A12 Numbers 90, 92, and 98

Page A12 Numbers 90, 92, and 98. Simplify each expression:

(90)
$$4^{-2} \times 4^3$$
, **(92)** $(2^{-1})^{-3}$, and **(98)** $(-4x^2)^{-1}$.

Solution. By the the definition of a^{-n} where n is a positive integer and the Laws of Exponents, Theorem A.1.A, we have the following.

(90)
$$4^{-2} \times 4^3 = \frac{1}{4^2} \times 4^3 = \frac{4^3}{4^2} = 4^{3-2} = 4^1 = \boxed{4}$$
.

(92)
$$(2^{-1})^{-3} = 2^{(-1)(-3)} = 2^3 = 2 \times 2 \times 2 = \boxed{8}.$$

(98)

$$(-4x^2)^{-1} = (-4)^{-1}(x^2)^{-1} = \frac{1}{-4}x^{(2)(-1)} = \frac{1}{-4}x^{-2} = \frac{1}{-4}\frac{1}{x^2} = \boxed{\frac{1}{-4x^2}}.$$

() Precalculus 1 (Algebra) August 13, 2021 10 / 10