Precalculus 1 (Algebra)

Appendix A. Review A.3. Polynomials—Exercises, Examples, Proofs

Table of contents

- Page A30 Number 24
- 2 Page A30 Numbers 48 and 50
- 3 Page A30 Numbers 66 and 74
- Page A30 Number 78
- 5 Page A30 Number 83
- 6 Page A30 Number 124
 - Page A30 Number 98
- Page A30 Number 100
 - 9 Page A31 Number 126

Page A30 Number 24. Tell whether the expression $3x^2 + 4$ is a monomial. If it is, name the variable and the coefficient and give the degree of the monomial. If it is not a monomial, state why not.

Solution. The expression $3x^2 + 4$ is not a monomial, but is a binomial which is the sum of the two monomials $3x^2$ and 4. Notice that monomial $3x^2$ is degree 2 with coefficient 3 and variable x.

- **Page A30 Number 24.** Tell whether the expression $3x^2 + 4$ is a monomial. If it is, name the variable and the coefficient and give the degree of the monomial. If it is not a monomial, state why not.
- **Solution.** The expression $3x^2 + 4$ is not a monomial, but is a binomial which is the sum of the two monomials $3x^2$ and 4. Notice that monomial $3x^2$ is degree 2 with coefficient 3 and variable x.

Page A30 numbers 48 and 50. Multiply, as indicated and express your answer as a single polynomial in standard form: **(48)** (3x + 1)(2x + 1), and **(50)** (x - 1)(x + 1).

Solution. (48) Applying FOIL we have $(3x+1)(2x+1) = (3x)(2x) + (3x)(1) + (1)(2x) + (1)(1) = 6x^2 + 3x + 2x + 1 = 6x^2 + 5x + 1$.

Page A30 numbers 48 and 50. Multiply, as indicated and express your answer as a single polynomial in standard form: **(48)** (3x + 1)(2x + 1), and **(50)** (x - 1)(x + 1).

Solution. (48) Applying FOIL we have

$$(3x + 1)(2x + 1) = (3x)(2x) + (3x)(1) + (1)(2x) + (1)(1) = 6x^2 + 3x + 2x + 1 = 6x^2 + 5x + 1$$
.

(50) Applying FOIL we have (x - 1)(x + 1) = $(x)(x) + (x)(1) + (-1)(x) + (-1)(1) = x^2 + x - x - 1 = x^2 - 1$.

Page A30 numbers 48 and 50. Multiply, as indicated and express your answer as a single polynomial in standard form: **(48)** (3x + 1)(2x + 1), and **(50)** (x - 1)(x + 1).

Solution. (48) Applying FOIL we have

$$(3x + 1)(2x + 1) = (3x)(2x) + (3x)(1) + (1)(2x) + (1)(1) =$$

 $6x^2 + 3x + 2x + 1 = 6x^2 + 5x + 1$.

(50) Applying FOIL we have (x - 1)(x + 1) = $(x)(x) + (x)(1) + (-1)(x) + (-1)(1) = x^2 + x - x - 1 = x^2 - 1$.

Page A30 Numbers 66 and 74. Find the quotient and the remainder. Check your work by verifying that (Quotient)(Divisor) + remainder = Dividend. **(66)** Divide $5x^4 - x^2 + x - 2$ by $x^2 + 2$, and **(74)** divide $1 - x^2 + x^4$ by $x^2 - x + 1$.

Solution. (66) We perform long division:

Page A30 Numbers 66 and 74. Find the quotient and the remainder. Check your work by verifying that (Quotient)(Divisor) + remainder = Dividend. **(66)** Divide $5x^4 - x^2 + x - 2$ by $x^2 + 2$, and **(74)** divide $1 - x^2 + x^4$ by $x^2 - x + 1$.

Solution. (66) We perform long division:

			$5x^{2}$			_	11
$x^{2}+2$		_	<i>x</i> ²	+	x	_	2
,	$5x^{4}$		$10x^{2}$				
			$11x^{2}$		Х	_	2
		_	$11x^{2}$			_	22
					X	+	20

So the quotient is $5x^2 - 11$ and the remainder is x + 20.

5 / 12

Page A30 Numbers 66 and 74. Find the quotient and the remainder. Check your work by verifying that (Quotient)(Divisor) + remainder = Dividend. **(66)** Divide $5x^4 - x^2 + x - 2$ by $x^2 + 2$, and **(74)** divide $1 - x^2 + x^4$ by $x^2 - x + 1$.

Solution. (66) We perform long division:

So the quotient is $5x^2 - 11$ and the remainder is x + 20. To check: $(5x^2 - 11)(x^2 + 2) + (x + 20) = (5x^2)(x^2) + (5x^2)(2) + (-11)(x^2) + (-11)(2) + x + 20 = 5x^4 + 10x^2 - 11x^2 - 22 + x + 20 = 5x^4 - x^2 + x - 2$.

Page A30 Numbers 66 and 74. Find the quotient and the remainder. Check your work by verifying that (Quotient)(Divisor) + remainder = Dividend. **(66)** Divide $5x^4 - x^2 + x - 2$ by $x^2 + 2$, and **(74)** divide $1 - x^2 + x^4$ by $x^2 - x + 1$.

Solution. (66) We perform long division:

So the quotient is $5x^2 - 11$ and the remainder is x + 20. To check: $(5x^2 - 11)(x^2 + 2) + (x + 20) = (5x^2)(x^2) + (5x^2)(2) + (-11)(x^2) + (-11)(2) + x + 20 = 5x^4 + 10x^2 - 11x^2 - 22 + x + 20 = 5x^4 - x^2 + x - 2$.

Page A30 Numbers 66 and 74 (continued)

Solution (continued). (74) We perform long division:

$$\begin{array}{r} x^2 - x + 1 \\ \hline x^4 & - x^2 & + 1 \\ \hline x^4 & - x^3 + x^2 \\ \hline x^3 & - 2x^2 \\ \hline x^3 & - x^2 + x \\ \hline - x^2 & - x + 1 \\ \hline - x^2 + x & - 1 \\ \hline \hline - 2x + 2 \end{array}$$

So the quotient is $x^2 + x - 1$ and the remainder is -2x + 2.

Page A30 Numbers 66 and 74 (continued)

Solution (continued). (74) We perform long division:

So the quotient is $x^2 + x - 1$ and the remainder is -2x + 2. To check: $(x^2+x-1)(x^2-x+1)+(-2x+2) = x^2(x^2-x+1)+x(x^2-x+1)-1(x^2-x+1)-2x+2 = x^4-x^3+x^2+x^3-x^2+x-x^2+x-1-2x+2 = x^4-x^2+1$.

Page A30 Numbers 66 and 74 (continued)

Solution (continued). (74) We perform long division:

So the quotient is $x^2 + x - 1$ and the remainder is -2x + 2. To check: $(x^2+x-1)(x^2-x+1)+(-2x+2) = x^2(x^2-x+1)+x(x^2-x+1)-1(x^2-x+1)-1(x^2-x+1)-2x+2 = x^4-x^3+x^2+x^3-x^2+x-x^2+x-1-2x+2 = x^4-x^2+1$.

Page A30 Number 78. Factor completely $x^2 - 9$. If it cannot be factored, say it is prime.

Solution. The special product "Difference of Two Square" states $(x - a)(x + a) = x^2 - a^2$. The right hand side of this equation with a = 3 is $x^2 - 9$, so we can factor $x^2 - 9$ as (x - 3)(x + 3).

Page A30 Number 78. Factor completely $x^2 - 9$. If it cannot be factored, say it is prime.

Solution. The special product "Difference of Two Square" states $(x - a)(x + a) = x^2 - a^2$. The right hand side of this equation with a = 3 is $x^2 - 9$, so we can factor $x^2 - 9$ as (x - 3)(x + 3).

Page A30 Number 83. Factor completely $x^2 - 10x + 21$. If it cannot be factored, say it is prime.

Solution. We look for integers *a* and *b* such that a + b = B = -10 and ab = C = 21. From the condition ab = 21 we see that we must use ± 1 and ± 21 , or ± 3 and ± 7 . Since (-3) + (-7) = -10, we take a = -3 and b = -7 to get x + a = x - 3 and x + b = x - 7. Then $\boxed{x^2 - 10x + 21 = (x - 3)(x - 7)}$.

Page A30 Number 83. Factor completely $x^2 - 10x + 21$. If it cannot be factored, say it is prime.

Solution. We look for integers *a* and *b* such that a + b = B = -10 and ab = C = 21. From the condition ab = 21 we see that we must use ± 1 and ± 21 , or ± 3 and ± 7 . Since (-3) + (-7) = -10, we take a = -3 and b = -7 to get x + a = x - 3 and x + b = x - 7. Then $\boxed{x^2 - 10x + 21 = (x - 3)(x - 7)}$.

Page A30 Number 124. Factor completely $x^4 + x^3 + x + 1$. If it cannot be factored, say it is prime.

Solution. We first factor by grouping: $x^4+x^3+x+1 = (x^4+x^3)+(x+1) = x^3(x+1)+1(x+1) = (x^3+1)(x+1).$

Page A30 Number 124. Factor completely $x^4 + x^3 + x + 1$. If it cannot be factored, say it is prime.

Solution. We first factor by grouping: $x^4+x^3+x+1 = (x^4+x^3)+(x+1) = x^3(x+1)+1(x+1) = (x^3+1)(x+1).$ Since $x^3+1 = x^3+1^3$ is a Sum of Two Cubes, we have by one of the "special products" that $x^3 + a^3 = (x+a)(x^2 - ax + a^2)$ and so (with a = 1) we know $x^3 + 1 = (x+1)(x^2 - x + 1).$

Page A30 Number 124. Factor completely $x^4 + x^3 + x + 1$. If it cannot be factored, say it is prime.

Solution. We first factor by grouping: $x^4 + x^3 + x + 1 = (x^4 + x^3) + (x+1) = x^3(x+1) + 1(x+1) = (x^3+1)(x+1)$. Since $x^3 + 1 = x^3 + 1^3$ is a Sum of Two Cubes, we have by one of the "special products" that $x^3 + a^3 = (x + a)(x^2 - ax + a^2)$ and so (with a = 1) we know $x^3 + 1 = (x + 1)(x^2 - x + 1)$. Hence we can factor as $x^4 + x^3 + x + 1 = (x^3 + 1)(x + 1) = (x + 1)(x^2 - x + 1)(x + 1) = (x^2 - x + 1)(x + 1)^2$.

Notice that $x^2 - x + 1$ cannot be factored over the integers since this would require integers *a* and *b* with ab = 1 and a + b = -1, which cannot happen.

Page A30 Number 124. Factor completely $x^4 + x^3 + x + 1$. If it cannot be factored, say it is prime.

Solution. We first factor by grouping: $x^4 + x^3 + x + 1 = (x^4 + x^3) + (x+1) = x^3(x+1) + 1(x+1) = (x^3+1)(x+1)$. Since $x^3 + 1 = x^3 + 1^3$ is a Sum of Two Cubes, we have by one of the "special products" that $x^3 + a^3 = (x+a)(x^2 - ax + a^2)$ and so (with a = 1) we know $x^3 + 1 = (x+1)(x^2 - x + 1)$. Hence we can factor as $x^4 + x^3 + x + 1 = (x^3 + 1)(x+1) = (x+1)(x^2 - x + 1)(x+1) = [(x^2 - x + 1)(x+1)^2]$.

Notice that $x^2 - x + 1$ cannot be factored over the integers since this would require integers *a* and *b* with ab = 1 and a + b = -1, which cannot happen.

Page A30 Number 98. Factor completely $8x^2 + 6x - 2$. If it cannot be factored, say it is prime.

Solution. First, we factor out the common factor 2 to get $2(4x^2 + 3x - 1)$.

Page A30 Number 98. Factor completely $8x^2 + 6x - 2$. If it cannot be factored, say it is prime.

Solution. First, we factor out the common factor 2 to get $2(4x^2 + 3x - 1)$. Now in $Ax^2 + Bx + C = 4x^2 + 3x - 1$, we have AC = (4)(-1) = -4. Now we need integers *a* and *b* such that ab = AC = -4 and a + b = B = 3. So we can take a = 4 and b = -1.

Page A30 Number 98. Factor completely $8x^2 + 6x - 2$. If it cannot be factored, say it is prime.

Solution. First, we factor out the common factor 2 to get $2(4x^2 + 3x - 1)$. Now in $Ax^2 + Bx + C = 4x^2 + 3x - 1$, we have AC = (4)(-1) = -4. Now we need integers *a* and *b* such that ab = AC = -4 and a + b = B = 3. So we can take a = 4 and b = -1. This gives $Ax^2 + Bx + C = Ax^2 + ax + bx + C = 4x^2 + 4x - x - 1 = 4x(x + 1) - (x + 1) = (4x - 1)(x + 1)$. Hence $8x^2 + 6x - 2x = 2(4x - 1)(x + 1)$.

Page A30 Number 98. Factor completely $8x^2 + 6x - 2$. If it cannot be factored, say it is prime.

Solution. First, we factor out the common factor 2 to get $2(4x^2 + 3x - 1)$. Now in $Ax^2 + Bx + C = 4x^2 + 3x - 1$, we have AC = (4)(-1) = -4. Now we need integers *a* and *b* such that ab = AC = -4 and a + b = B = 3. So we can take a = 4 and b = -1. This gives $Ax^2 + Bx + C = Ax^2 + ax + bx + C = 4x^2 + 4x - x - 1 = 4x(x + 1) - (x + 1) = (4x - 1)(x + 1)$. Hence $8x^2 + 6x - 2x = 2(4x - 1)(x + 1)$.

Page A30 Number 100. Factor completely $x^4 - 1$. If it cannot be factored, say it is prime.

Solution. The special product "Difference of Two Square" states $(x - a)(x + a) = x^2 - a^2$. We have $x^4 - 1 = (x^2)^2 - 1^2$ so we factor to get $(x^2 - 1)(x^2 + 1)$.

Page A30 Number 100. Factor completely $x^4 - 1$. If it cannot be factored, say it is prime.

Solution. The special product "Difference of Two Square" states $(x - a)(x + a) = x^2 - a^2$. We have $x^4 - 1 = (x^2)^2 - 1^2$ so we factor to get $(x^2 - 1)(x^2 + 1)$. But $x^2 - 1$ is also a difference of two squares and $x^2 - 1 = (x - 1)(x + 1)$. Hence $x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x^2 + 1)(x - 1)(x + 1)$. Notice that $x^2 + 1$ is prime by Theorem A.3.B, so it does not factor.

Page A30 Number 100. Factor completely $x^4 - 1$. If it cannot be factored, say it is prime.

Solution. The special product "Difference of Two Square" states $(x - a)(x + a) = x^2 - a^2$. We have $x^4 - 1 = (x^2)^2 - 1^2$ so we factor to get $(x^2 - 1)(x^2 + 1)$. But $x^2 - 1$ is also a difference of two squares and $x^2 - 1 = (x - 1)(x + 1)$. Hence $x^4 - 1 = (x^2 - 1)(x^2 + 1) = \boxed{(x^2 + 1)(x - 1)(x + 1)}$. Notice that $x^2 + 1$ is prime by Theorem A.3.B, so it does not factor.

Page A31 Number 126. Determine the number that should be added to complete the square of the expression $p^2 + 14p$. Then factor the expression.

Solution. We know
$$x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$$
. So with $b = 14$ we add $(b/2)^2 = (14/2)^2 = 7^2 = 49$ to the given expression to get $p^2 + 14p + 49 = (p + (14/2))^2 = (p + 7)^2$.

Page A31 Number 126. Determine the number that should be added to complete the square of the expression $p^2 + 14p$. Then factor the expression.

Solution. We know
$$x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$$
. So with $b = 14$ we add $(b/2)^2 = (14/2)^2 = 7^2 = 49$ to the given expression to get $p^2 + 14p + 49 = (p + (14/2))^2 = (p + 7)^2$.