Precalculus 1 (Algebra)

Appendix A. Review A.3. Polynomials—Exercises, Examples, Proofs

Table of contents

- 1 [Page A30 Number 24](#page-2-0)
- 2 [Page A30 Numbers 48 and 50](#page-4-0)
- 3 [Page A30 Numbers 66 and 74](#page-7-0)
- [Page A30 Number 78](#page-14-0)
- 5 [Page A30 Number 83](#page-16-0)
- 6 [Page A30 Number 124](#page-18-0)
	- [Page A30 Number 98](#page-22-0)
- 8 [Page A30 Number 100](#page-26-0)
- [Page A31 Number 126](#page-29-0)

Page A30 Number 24. Tell whether the expression $3x^2 + 4$ is a monomial. If it is, name the variable and the coefficient and give the degree of the monomial. If it is not a monomial, state why not.

Solution. The expression 3x² + 4 is not a monomial , but is a binomial which is the sum of the two monomials 3 x^2 and 4. Notice that monomial $3x^2$ is degree 2 with coefficient 3 and variable x.

Page A30 Number 24. Tell whether the expression $3x^2 + 4$ is a monomial. If it is, name the variable and the coefficient and give the degree of the monomial. If it is not a monomial, state why not.

Solution. The expression 3 $x^2 + 4$ is not a monomial , but is a binomial which is the sum of the two monomials $3x^2$ and 4. Notice that monomial $3x^2$ is degree 2 with coefficient 3 and variable x.

Page A30 numbers 48 and 50. Multiply, as indicated and express your answer as a single polynomial in standard form: (48) $(3x + 1)(2x + 1)$, and (50) $(x - 1)(x + 1)$.

Solution. (48) Applying FOIL we have $(3x+1)(2x+1) = (3x)(2x) + (3x)(1) + (1)(2x) + (1)(1) =$ $6x^2 + 3x + 2x + 1 = |6x^2 + 5x + 1|$.

Page A30 numbers 48 and 50. Multiply, as indicated and express your answer as a single polynomial in standard form: (48) $(3x + 1)(2x + 1)$, and (50) $(x - 1)(x + 1)$.

Solution. (48) Applying FOIL we have
\n
$$
(3x + 1)(2x + 1) = (3x)(2x) + (3x)(1) + (1)(2x) + (1)(1) =
$$
\n
$$
6x2 + 3x + 2x + 1 = \boxed{6x2 + 5x + 1}.
$$

(50) Applying FOIL we have $(x - 1)(x + 1) =$ $(x)(x) + (x)(1) + (-1)(x) + (-1)(1) = x^2 + x - x - 1 = |x^2 - 1|$.

Page A30 numbers 48 and 50. Multiply, as indicated and express your answer as a single polynomial in standard form: (48) $(3x + 1)(2x + 1)$, and (50) $(x - 1)(x + 1)$.

Solution. (48) Applying FOIL we have
\n
$$
(3x + 1)(2x + 1) = (3x)(2x) + (3x)(1) + (1)(2x) + (1)(1) =
$$
\n
$$
6x2 + 3x + 2x + 1 = 6x2 + 5x + 1.
$$

(50) Applying FOIL we have $(x - 1)(x + 1) =$ $(x)(x) + (x)(1) + (-1)(x) + (-1)(1) = x^2 + x - x - 1 = |x^2 - 1|$.

Page A30 Numbers 66 and 74. Find the quotient and the remainder. Check your work by verifying that (Quotient)(Divisor) + remainder = Dividend. (66) Divide 5 $x^4 - x^2 + x - 2$ by $x^2 + 2$, and (74) divide $1 - x^2 + x^4$ by $x^2 - x + 1$.

Solution. (66) We perform long division:

$$
\begin{array}{r} 5x^2 & -11 \\ x^2 + 2 & 5x^4 & -x^2 & + x & -2 \\ \hline 5x^4 & +10x^2 & -11x^2 & + x & -2 \\ \hline & -11x^2 & + x & -2 \\ \hline & -11x^2 & -22 \\ \hline & x & +20 \end{array}
$$

Page A30 Numbers 66 and 74. Find the quotient and the remainder. Check your work by verifying that (Quotient)(Divisor) + remainder = Dividend. (66) Divide 5 $x^4 - x^2 + x - 2$ by $x^2 + 2$, and (74) divide $1 - x^2 + x^4$ by $x^2 - x + 1$.

Solution. (66) We perform long division:

So the quotient is 5 $x^2 - 11$ and the remainder is $x + 20$.

Page A30 Numbers 66 and 74. Find the quotient and the remainder. Check your work by verifying that (Quotient)(Divisor) + remainder = Dividend. (66) Divide 5 $x^4 - x^2 + x - 2$ by $x^2 + 2$, and (74) divide $1 - x^2 + x^4$ by $x^2 - x + 1$.

Solution. (66) We perform long division:

Page A30 Numbers 66 and 74. Find the quotient and the remainder. Check your work by verifying that (Quotient)(Divisor) + remainder = Dividend. (66) Divide 5 $x^4 - x^2 + x - 2$ by $x^2 + 2$, and (74) divide $1 - x^2 + x^4$ by $x^2 - x + 1$.

Solution. (66) We perform long division:

So $|$ the quotient is 5 x^2-11 and the remainder is $x+20 \vert$. To check: $(5x^2 - 11)(x^2 + 2) + (x + 20) = (5x^2)(x^2) + (5x^2)(2) + (-11)(x^2) +$ $(-11)(2) + x + 20 = 5x^4 + 10x^2 - 11x^2 - 22 + x + 20 = 5x^4 - x^2 + x - 2.$ (1) [Precalculus 1 \(Algebra\)](#page-0-0) August 14, 2021 5 / 12

Page A30 Numbers 66 and 74 (continued)

Solution (continued). (74) We perform long division:

So the quotient is $x^2 + x - 1$ and the remainder is $-2x + 2$.

Page A30 Numbers 66 and 74 (continued)

Solution (continued). (74) We perform long division:

$$
\begin{array}{r} x^2 - x + 1 \overline{\smash{\big)}\begin{array}{|l} x^4 x^2 + x - 1 \\ \underline{x^4 - x^3 + x^2} x^3 - 2x^2 \\ \underline{x^3 - x^2 + x} x^2 - x + 1 \\ \underline{-x^2 - x + 1} x^2 + x - 1 \\ \underline{-x^2 + x - 1} x^2 + x - 1 \\ \underline{-x^2 + x - 1} x^2 + x - 1} \\ \end{array} \end{array}
$$

So $|$ the quotient is $x^2 + x - 1$ and the remainder is $-2x + 2$. To check: $(x^{2}+x-1)(x^{2}-x+1)+(-2x+2) = x^{2}(x^{2}-x+1)+x(x^{2}-x+1)-1(x^{2}-x+1)$ 1)−2x+2 = $x^4 - x^3 + x^2 + x^3 - x^2 + x - x^2 + x - 1 - 2x + 2 = x^4 - x^2 + 1$.

Page A30 Numbers 66 and 74 (continued)

Solution (continued). (74) We perform long division:

$$
\begin{array}{r} x^2 - x + 1 \overline{\smash{\big)}\begin{array}{|l} x^4 - x^3 + x^2 + 1 \\ \underline{x^4 - x^3 + x^2} + 1 \\ \underline{x^3 - 2x^2} \\ -x^3 - x^2 + x \\ \underline{-x^2 - x + 1} \\ -x^2 - x + 1 \\ \underline{-x^2 + x - 1} \\ -2x + 2 \end{array}} \end{array}
$$

So $|$ the quotient is $x^2 + x - 1$ and the remainder is $-2x + 2$. To check: $(x^{2}+x-1)(x^{2}-x+1)+(-2x+2) = x^{2}(x^{2}-x+1)+x(x^{2}-x+1)-1(x^{2}-x+$ 1)−2x+2 = $x^4 - x^3 + x^2 + x^3 - x^2 + x - x^2 + x - 1 - 2x + 2 = x^4 - x^2 + 1$.

Page A30 Number 78. Factor completely $x^2 - 9$. If it cannot be factored, say it is prime.

Solution. The special product "Difference of Two Square" states $(x - a)(x + a) = x^2 - a^2$. The right hand side of this equation with $a = 3$ is $x^2 - 9$, so we can factor $x^2 - 9$ as $(x - 3)(x + 3)$.

Page A30 Number 78. Factor completely $x^2 - 9$. If it cannot be factored, say it is prime.

Solution. The special product "Difference of Two Square" states $(x - a)(x + a) = x^2 - a^2$. The right hand side of this equation with $a = 3$ is x^2-9 , so we can factor x^2-9 as $\big|(x-3)(x+3)\big|$.

Page A30 Number 83. Factor completely $x^2 - 10x + 21$. If it cannot be factored, say it is prime.

Solution. We look for integers a and b such that $a + b = B = -10$ and $ab = C = 21$. From the condition $ab = 21$ we see that we must use ± 1 and ± 21 , or ± 3 and ± 7 . Since $(-3) + (-7) = -10$, we take $a = -3$ and $b = -7$ to get $x + a = x - 3$ and $x + b = x - 7$. Then $x^2 - 10x + 21 = (x - 3)(x - 7)$.

Page A30 Number 83. Factor completely $x^2 - 10x + 21$. If it cannot be factored, say it is prime.

Solution. We look for integers a and b such that $a + b = B = -10$ and $ab = C = 21$. From the condition $ab = 21$ we see that we must use ± 1 and ± 21 , or ± 3 and ± 7 . Since $(-3) + (-7) = -10$, we take $a = -3$ and $b = -7$ to get $x + a = x - 3$ and $x + b = x - 7$. Then $x^2 - 10x + 21 = (x - 3)(x - 7)$.

Page A30 Number 124. Factor completely $x^4 + x^3 + x + 1$. If it cannot be factored, say it is prime.

Solution. We first factor by grouping: $x^4 + x^3 + x + 1 = (x^4 + x^3) + (x + 1) = x^3(x + 1) + 1(x + 1) = (x^3 + 1)(x + 1).$

Page A30 Number 124. Factor completely $x^4 + x^3 + x + 1$. If it cannot be factored, say it is prime.

Solution. We first factor by grouping: $x^4 + x^3 + x + 1 = (x^4 + x^3) + (x + 1) = x^3(x + 1) + 1(x + 1) = (x^3 + 1)(x + 1).$ Since $x^3 + 1 = x^3 + 1^3$ is a Sum of Two Cubes, we have by one of the "special products" that $x^3 + a^3 = (x + a)(x^2 - ax + a^2)$ and so (with $a = 1$) we know $x^3 + 1 = (x + 1)(x^2 - x + 1)$.

Page A30 Number 124. Factor completely $x^4 + x^3 + x + 1$. If it cannot be factored, say it is prime.

Solution. We first factor by grouping: $x^4 + x^3 + x + 1 = (x^4 + x^3) + (x + 1) = x^3(x + 1) + 1(x + 1) = (x^3 + 1)(x + 1).$ Since $x^3+1=x^3+1^3$ is a Sum of Two Cubes, we have by one of the "special products" that $x^3 + a^3 = (x + a)(x^2 - ax + a^2)$ and so (with $a=1$) we know $x^3+1=(x+1)(x^2-x+1)$. Hence we can factor as $x^4 + x^3 + x + 1 = (x^3 + 1)(x + 1) = (x + 1)(x^2 - x + 1)(x + 1) =$ $(x^2 - x + 1)(x + 1)^2$.

Notice that $x^2 - x + 1$ cannot be factored over the integers since this would require integers a and b with $ab = 1$ and $a + b = -1$, which cannot happen.

Page A30 Number 124. Factor completely $x^4 + x^3 + x + 1$. If it cannot be factored, say it is prime.

Solution. We first factor by grouping: $x^4 + x^3 + x + 1 = (x^4 + x^3) + (x + 1) = x^3(x + 1) + 1(x + 1) = (x^3 + 1)(x + 1).$ Since $x^3+1=x^3+1^3$ is a Sum of Two Cubes, we have by one of the "special products" that $x^3 + a^3 = (x + a)(x^2 - ax + a^2)$ and so (with $\alpha=1)$ we know $x^3+1=(x+1)(x^2-x+1).$ Hence we can factor as $x^4 + x^3 + x + 1 = (x^3 + 1)(x + 1) = (x + 1)(x^2 - x + 1)(x + 1) =$ $(x^2-x+1)(x+1)^2$.

Notice that $x^2 - x + 1$ cannot be factored over the integers since this would require integers a and b with $ab = 1$ and $a + b = -1$, which cannot happen.

Page A30 Number 98. Factor completely $8x^2 + 6x - 2$. If it cannot be factored, say it is prime.

Solution. First, we factor out the common factor 2 to get $2(4x^2+3x-1)$.

Page A30 Number 98. Factor completely $8x^2 + 6x - 2$. If it cannot be factored, say it is prime.

Solution. First, we factor out the common factor 2 to get $2(4x^2+3x-1)$. Now in $Ax^2+Bx+C=4x^2+3x-1$, we have $AC = (4)(-1) = -4$. Now we need integers a and b such that $ab = AC = -4$ and $a + b = B = 3$. So we can take $a = 4$ and $b = -1$.

Page A30 Number 98. Factor completely $8x^2 + 6x - 2$. If it cannot be factored, say it is prime.

Solution. First, we factor out the common factor 2 to get $2(4x^2+3x-1)$. Now in $Ax^2+Bx+C=4x^2+3x-1$, we have $AC = (4)(-1) = -4$. Now we need integers a and b such that $ab = AC = -4$ and $a + b = B = 3$. So we can take $a = 4$ and $b = -1$. This gives $Ax^2 + Bx + C = Ax^2 + ax + bx + C = 4x^2 + 4x - x - 1 =$ $4x(x + 1) - (x + 1) = (4x - 1)(x + 1)$. Hence $8x^2 + 6x - 2x = 2(4x - 1)(x + 1).$

Page A30 Number 98. Factor completely $8x^2 + 6x - 2$. If it cannot be factored, say it is prime.

Solution. First, we factor out the common factor 2 to get $2(4x^2+3x-1)$. Now in $Ax^2+Bx+C=4x^2+3x-1$, we have $AC = (4)(-1) = -4$. Now we need integers a and b such that $ab = AC = -4$ and $a + b = B = 3$. So we can take $a = 4$ and $b = -1$. This gives $Ax^2 + Bx + C = Ax^2 + ax + bx + C = 4x^2 + 4x - x - 1 =$ $4x(x + 1) - (x + 1) = (4x - 1)(x + 1)$. Hence $8x^2 + 6x - 2x = 2(4x - 1)(x + 1).$

Page A30 Number 100. Factor completely $x^4 - 1$. If it cannot be factored, say it is prime.

Solution. The special product "Difference of Two Square" states $(x - a)(x + a) = x^2 - a^2$. We have $x^4 - 1 = (x^2)^2 - 1^2$ so we factor to get $(x^2-1)(x^2+1)$.

Page A30 Number 100. Factor completely $x^4 - 1$. If it cannot be factored, say it is prime.

Solution. The special product "Difference of Two Square" states $(x - a)(x + a) = x^2 - a^2$. We have $x^4 - 1 = (x^2)^2 - 1^2$ so we factor to $\mathrm{get\ } (x^2-1)(x^2+1).$ But x^2-1 is also a difference of two squares and $x^2 - 1 = (x - 1)(x + 1)$. Hence $x^4-1=(x^2-1)(x^2+1)=\left|(x^2+1)(x-1)(x+1)\right|$. Notice that x^2+1 is prime by Theorem A.3.B, so it does not factor.

Page A30 Number 100. Factor completely $x^4 - 1$. If it cannot be factored, say it is prime.

Solution. The special product "Difference of Two Square" states $(x - a)(x + a) = x^2 - a^2$. We have $x^4 - 1 = (x^2)^2 - 1^2$ so we factor to get $(x^2-1)(x^2+1)$. But x^2-1 is also a difference of two squares and $x^2 - 1 = (x - 1)(x + 1)$. Hence $x^4-1=(x^2-1)(x^2+1)=\left|(x^2+1)(x-1)(x+1)\right|$. Notice that x^2+1 is prime by Theorem A.3.B, so it does not factor.

Page A31 Number 126. Determine the number that should be added to complete the square of the expression $\rho^2+14\rho$. Then factor the expression.

Solution. We know
$$
x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2
$$
. So with $b = 14$ we add $(b/2)^2 = (14/2)^2 = 7^2 = 49$ to the given expression to get $p^2 + 14p + 49 = (p + (14/2))^2 = (p + 7)^2$.

Page A31 Number 126. Determine the number that should be added to complete the square of the expression $\rho^2+14\rho$. Then factor the expression.

Solution. We know
$$
x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2
$$
. So with $b = 14$ we add $(b/2)^2 = (14/2)^2 = 7^2 = 49$ to the given expression to get
$$
p^2 + 14p + 49 = (p + (14/2))^2 = (p + 7)^2
$$
.