Precalculus 1 (Algebra)

Appendix A. Review A.7. Complex Numbers; Quadratic Equations in the Complex Number System—Exercises, Examples, Proofs

Table of contents

- [Page A60 Numbers 12, 14 and 22](#page-2-0)
- [Page A61 number 92](#page-6-0)
- [Page A60 Number 26](#page-10-0)
- [Page A60 Number 30](#page-12-0)
- [Page A61 Numbers 36, 38, and 48](#page-14-0)
- [Page A61 Number 60](#page-19-0)
- [Page A61 Number 70](#page-21-0)
- [Page A61 Number 78](#page-24-0)

Page A60 Numbers 12, 14 and 22. Perform the indicated operation, and write each expression in the standard form $a + bi$. (12) $(4+5i)+(-8+2i)$, (14) $(3-4i)-(-3-4i)$, and (22) $(5 + 3i)(2 - i)$.

Solution. (12) By definition of complex number addition, $(4+5i)+(-8+2i) = (4+(-8)) + (5+2)i = [-4+7i]$.

Page A60 Numbers 12, 14 and 22. Perform the indicated operation, and write each expression in the standard form $a + bi$. (12) $(4+5i) + (-8+2i)$, (14) $(3-4i) - (-3-4i)$, and (22) $(5 + 3i)(2 - i)$.

Solution. (12) By definition of complex number addition, $(4+5i)+(-8+2i) = (4+(-8)) + (5+2)i = -4+7i$.

(14) By definition of complex number subtraction, $(3-4i) - (-3-4i) = (3-(-3)) + ((-4) - (-4))i = |6|$.

Page A60 Numbers 12, 14 and 22. Perform the indicated operation, and write each expression in the standard form $a + bi$. (12) $(4+5i) + (-8+2i)$, (14) $(3-4i) - (-3-4i)$, and (22) $(5 + 3i)(2 - i)$.

Solution. (12) By definition of complex number addition, $(4+5i)+(-8+2i) = (4+(-8)) + (5+2)i = -4+7i$.

(14) By definition of complex number subtraction, $(3-4i) - (-3-4i) = (3-(-3)) + ((-4) - (-4))i = |6|$.

(22) By definition of complex number product, $(5+3i)(2-i) = (5)(2) + (5)(-i) + (3i)(2) + (3i)(-i) =$ $10-5i+6i-3i^2 = 10-5i+6i-3(-1) = |13+i|$.

Page A60 Numbers 12, 14 and 22. Perform the indicated operation, and write each expression in the standard form $a + bi$. (12) $(4+5i) + (-8+2i)$, (14) $(3-4i) - (-3-4i)$, and (22) $(5 + 3i)(2 - i)$.

Solution. (12) By definition of complex number addition, $(4+5i)+(-8+2i) = (4+(-8)) + (5+2)i = -4+7i$.

(14) By definition of complex number subtraction, $(3-4i) - (-3-4i) = (3-(-3)) + ((-4) - (-4))i = |6|$.

(22) By definition of complex number product, $(5+3i)(2-i) = (5)(2) + (5)(-i) + (3i)(2) + (3i)(-i) =$ $10-5i+6i-3i^2 = 10-5i+6i-3(-1) = |13+i|.$

Page A61 number 92. Prove Theorem A.7.A(d): The conjugate of the product of two complex numbers equals the product of their conjugates: $\overline{zw} = \overline{z} \, \overline{w}$.

Proof. Let $z = a + bi$ and $w = c + di$ in standard form. Then by the definition of multiplication of complex numbers, $\overline{zw} = (a + bi)(c + di) =$ $\overline{(a)(c) + (a)(di) + (bi)(c) + (bi)(di)} = (ac + adi + bci + bdi^2) =$ $\overline{(ac-bd)+(ad+bc)i}=(ac-bd)-(ad+bc)i.$

Page A61 number 92. Prove Theorem A.7.A(d): The conjugate of the product of two complex numbers equals the product of their conjugates: $\overline{zw} = \overline{z} \, \overline{w}$.

Proof. Let $z = a + bi$ and $w = c + di$ in standard form. Then by the definition of multiplication of complex numbers, $\overline{zw} = (a + bi)(c + di) =$ $\overline{(a)(c) + (a)(di) + (bi)(c) + (bi)(di)} = \overline{(ac + adi + bci + bdi^2)} =$ $(ac - bd) + (ad + bc)i = (ac - bd) - (ad + bc)i.$

Similarly, $\overline{z} \overline{w} = \overline{a + bi} \overline{c + di} = (a - bi)(c - di) = (a)(c) + (a)(-di) +$ $(-bi)(c) + (-bi)(-di) = ac - adi - bci + bdi² = (ac - bd) - (ad + bc)i.$

Page A61 number 92. Prove Theorem A.7.A(d): The conjugate of the product of two complex numbers equals the product of their conjugates: $\overline{zw} = \overline{z} \, \overline{w}$.

Proof. Let $z = a + bi$ and $w = c + di$ in standard form. Then by the definition of multiplication of complex numbers, $\overline{zw} = (a + bi)(c + di) =$ $\overline{(a)(c) + (a)(di) + (bi)(c) + (bi)(di)} = \overline{(ac + adi + bci + bdi^2)} =$ $(ac - bd) + (ad + bc)i = (ac - bd) - (ad + bc)i.$

Similarly, $\overline{z} \overline{w} = \overline{a + bi} \overline{c + di} = (a - bi)(c - di) = (a)(c) + (a)(-di) +$ $(-bi)(c) + (-bi)(-di) = ac - adi - bci + bdi² = (ac - bd) - (ad + bc)i.$

Hence $\overline{zw} = \overline{z} \overline{w}$, since both equal $(ac - bd) - (ad + bc)i$.

Page A61 number 92. Prove Theorem A.7.A(d): The conjugate of the product of two complex numbers equals the product of their conjugates: $\overline{zw} = \overline{z} \, \overline{w}$.

Proof. Let $z = a + bi$ and $w = c + di$ in standard form. Then by the definition of multiplication of complex numbers, $\overline{zw} = (a + bi)(c + di) =$ $\overline{(a)(c) + (a)(di) + (bi)(c) + (bi)(di)} = \overline{(ac + adi + bci + bdi^2)} =$ $(ac - bd) + (ad + bc)i = (ac - bd) - (ad + bc)i.$

Similarly, $\overline{z} \overline{w} = \overline{a + bi} \overline{c + di} = (a - bi)(c - di) = (a)(c) + (a)(-di) +$ $(-bi)(c) + (-bi)(-di) = ac - adi - bci + bdi² = (ac - bd) - (ad + bc)i.$

Hence $\overline{zw} = \overline{z} \overline{w}$, since both equal $(ac - bd) - (ad + bc)i$.

Page A60 Number 26. Perform the indicated operation, and write each expression in the standard form $a + bi$. (26) $\frac{13}{5 - 12i}$.

Solution. (26) We make the denominator real by multiplying by a version of 1 that involves the conjugate of the denominator:

$$
\frac{13}{5 - 12i} = \frac{13}{5 - 12i}(1) = \frac{13}{5 - 12i} \left(\frac{5 + 12i}{5 + 12i}\right) = \frac{13(5 + 12i)}{(5 - 12i)(5 + 12i)}
$$

$$
= \frac{13(5 + 12i)}{5^2 + 12^2} = \frac{13(5 + 12i)}{169} = \frac{5 + 12i}{13} = \boxed{\frac{5}{13} + \frac{12}{13}i}.
$$

Page A60 Number 26. Perform the indicated operation, and write each expression in the standard form $a + bi$. (26) $\frac{13}{5 - 12i}$.

Solution. (26) We make the denominator real by multiplying by a version of 1 that involves the conjugate of the denominator:

$$
\frac{13}{5-12i} = \frac{13}{5-12i}(1) = \frac{13}{5-12i} \left(\frac{5+12i}{5+12i}\right) = \frac{13(5+12i)}{(5-12i)(5+12i)}
$$

$$
= \frac{13(5+12i)}{5^2+12^2} = \frac{13(5+12i)}{169} = \frac{5+12i}{13} = \boxed{\frac{5}{13} + \frac{12}{13}i}.
$$

Page A60 Number 30. Perform the indicated operation, and write each expression in the standard form $a + bi$. (30) $\frac{2+3i}{1-i}$.

Solution. (30) We make the denominator real by multiplying by a version of 1 that involves the conjugate of the denominator:

$$
\frac{2+3i}{1-i} = \frac{2+3i}{1-i}(1) = \frac{2+3i}{1-i}\left(\frac{1+i}{1+i}\right) = \frac{(2+3i)(1+i)}{(1-i)(1+i)}
$$

$$
= \frac{(2+3i)(1+i)}{1^2+1^2} = \frac{(2+3i)(1+i)}{2} = \frac{(2)(1)+(2)(i)+(3i)(1)+(3i)(i)}{2}
$$

$$
= \frac{2+2i+3i+3(-1)}{2} = \frac{-1+5i}{2} = \boxed{\frac{-1}{2} + \frac{5}{2}i}.
$$

Page A60 Number 30. Perform the indicated operation, and write each expression in the standard form $a + bi$. (30) $\frac{2+3i}{1-i}$.

Solution. (30) We make the denominator real by multiplying by a version of 1 that involves the conjugate of the denominator:

$$
\frac{2+3i}{1-i} = \frac{2+3i}{1-i}(1) = \frac{2+3i}{1-i}\left(\frac{1+i}{1+i}\right) = \frac{(2+3i)(1+i)}{(1-i)(1+i)}
$$

$$
= \frac{(2+3i)(1+i)}{1^2+1^2} = \frac{(2+3i)(1+i)}{2} = \frac{(2)(1)+(2)(i)+(3i)(1)+(3i)(i)}{2}
$$

$$
= \frac{2+2i+3i+3(-1)}{2} = \frac{-1+5i}{2} = \boxed{\frac{-1}{2} + \frac{5}{2}i}.
$$

Page A61 Numbers 36, 38, and 48

Page A61 Numbers 36, 38, and 48. Perform the indicated operation, and write each expression in the standard form $a + bi.$ $\bf{(36)}$ $i^{14},$ (38) i^{-23} , and (48) $i^7 + i^5 + i^3 + i$.

Solution. (36) Since $i^4 = 1$, we have

$$
i^{14} = (i^4)(i^4)(i^4)(i^2) = (1)(1)(1)(-1) = \boxed{-1}.
$$

Page A61 Numbers 36, 38, and 48

Page A61 Numbers 36, 38, and 48. Perform the indicated operation, and write each expression in the standard form $a + bi.$ $\bf{(36)}$ $i^{14},$ (38) i^{-23} , and (48) $i^7 + i^5 + i^3 + i$.

Solution. (36) Since $i^4 = 1$, we have

$$
i^{14} = (i^4)(i^4)(i^4)(i^2) = (1)(1)(1)(-1) = \boxed{-1}.
$$

(38) Since
$$
i^4 = 1
$$
 then $i^{20} = (i^4)^5 = 1^5 = 1$, then $i^{23} = (i^{20})(i^3) = (1)(-i) = -i$. So

$$
i^{-23} = \frac{1}{i^{23}} = \frac{1}{-i} = \frac{1}{-i} \left(\frac{i}{i} \right) = \frac{i}{-i^2} = \frac{i}{1} = \boxed{i}.
$$

Page A61 Numbers 36, 38, and 48

Page A61 Numbers 36, 38, and 48. Perform the indicated operation, and write each expression in the standard form $a + bi.$ $\bf{(36)}$ $i^{14},$ (38) i^{-23} , and (48) $i^7 + i^5 + i^3 + i$.

Solution. (36) Since $i^4 = 1$, we have

$$
i^{14} = (i^4)(i^4)(i^4)(i^2) = (1)(1)(1)(-1) = \boxed{-1}.
$$

(38) Since
$$
i^4 = 1
$$
 then $i^{20} = (i^4)^5 = 1^5 = 1$, then
\n $i^{23} = (i^{20})(i^3) = (1)(-i) = -i$. So
\n
$$
i^{-23} = \frac{1}{i^{23}} = \frac{1}{-i} = \frac{1}{-i} \left(\frac{i}{i}\right) = \frac{i}{-i^2} = \frac{i}{1} = \boxed{i}.
$$

Page A61 Numbers 36, 38, and 48 (continued)

Page A61 Numbers 36, 38, and 48. Perform the indicated operation, and write each expression in the standard form $a + bi.$ $\bf{(36)}$ $i^{14},$ (38) i^{-23} , and (48) $i^7 + i^5 + i^3 + i$.

Solution (continued. (48) Since $i^4 = 1$ then we can reduce the exponents of i by multiples of 4 to get

$$
i7 + i5 + i3 + i = (i4)(i3) + (i4)(i) + i3 + i
$$

= $i3 + i + i3 + i = 2i3 + 2i = 2(-i) + 2i = 0$.

Page A61 Numbers 36, 38, and 48 (continued)

Page A61 Numbers 36, 38, and 48. Perform the indicated operation, and write each expression in the standard form $a + bi.$ $\bf{(36)}$ $i^{14},$ (38) i^{-23} , and (48) $i^7 + i^5 + i^3 + i$.

Solution (continued. (48) Since $i^4 = 1$ then we can reduce the exponents of i by multiples of 4 to get

$$
i7 + i5 + i3 + i = (i4)(i3) + (i4)(i) + i3 + i
$$

= $i3 + i + i3 + i = 2i3 + 2i = 2(-i) + 2i = 0$.

Page A61 Number 60. Solve in the complex number system $x^2 + 4x + 8 = 0.$

Solution. We use the quadratic formula (which involves the principal square root), $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $\frac{2}{2a}$ where $a = 1$, $b = 4$, and $c = 8$. So we have $x = \frac{-(4) \pm \sqrt{(4)^2 - 4(1)(8)}}{2(1)}$ $\frac{(4)^2 - 4(1)(8)}{2(1)} = \frac{-4 \pm \sqrt{2}}{2}$ $16 - 32$ 2 $=$ $\frac{-4 \pm \frac{3}{2}}{2}$ −16 $\frac{\sqrt{-16}}{2} = \frac{-4 \pm 4i}{2}$ $\frac{2}{2}$ = -2 ± 2*i*.

So the solutions are $x = -2 - 2i$ and $x = -2 + 2i$, or the solution set is $\left[\{-2-2i, -2+2i\}\right]$.

Page A61 Number 60. Solve in the complex number system $x^2 + 4x + 8 = 0.$

Solution. We use the quadratic formula (which involves the principal square root), $x=\dfrac{-b\pm1}{2}$ √ $b^2 - 4ac$ $\frac{2}{2a}$ where $a = 1$, $b = 4$, and $c = 8$. So we have $x = \frac{-(4) \pm \sqrt{(4)^2 - 4(1)(8)}}{2(1)}$ $\frac{(4)^2-4(1)(8)}{2(1)} = \frac{-4 \pm \sqrt{2}}{2}$ √ $16 - 32$ 2 $=\frac{-4\pm}{}$ √ -16 $\frac{\sqrt{-16}}{2} = \frac{-4 \pm 4i}{2}$ $\frac{2}{2}$ = -2 ± 2*i*.

So the solutions are $x = -2 - 2i$ and $x = -2 + 2i$, or the solution set is $\{-2 - 2i, -2 + 2i\}.$

Page A61 Number 70. Solve in the complex number system $x^3 + 27 = 0$.

Solution. The expression $x^3 + 27 = x^3 + 3^3$ is a "Sum of Two Cubes," so from the formula $(x + a)(x^2 - ax + a^2) = x^3 + a^3$ (see [A.3. Polynomials\)](http://faculty.etsu.edu/gardnerr/1710/notes-Precalculus-10/Sullivan10-A-3.pdf) we have $x^3 + 27 = (x + 3)(x^2 - 3x + 9)$. So we see that $x = -3$ is a solution.

Page A61 Number 70. Solve in the complex number system $x^3 + 27 = 0$.

Solution. The expression $x^3 + 27 = x^3 + 3^3$ is a "Sum of Two Cubes," so from the formula $(x + a)(x^2 - ax + a^2) = x^3 + a^3$ (see [A.3. Polynomials\)](http://faculty.etsu.edu/gardnerr/1710/notes-Precalculus-10/Sullivan10-A-3.pdf) we have $x^3 + 27 = (x+3)(x^2 - 3x + 9).$ So we see that $x = -3$ is a $\textsf{solution}.$ But we also have solutions when $x^2-3x+9=0,$ so we solve this with the quadratic formula to also get

Page A61 Number 70. Solve in the complex number system $x^3 + 27 = 0$.

Solution. The expression $x^3 + 27 = x^3 + 3^3$ is a "Sum of Two Cubes," so from the formula $(x + a)(x^2 - ax + a^2) = x^3 + a^3$ (see [A.3. Polynomials\)](http://faculty.etsu.edu/gardnerr/1710/notes-Precalculus-10/Sullivan10-A-3.pdf) we have $x^3 + 27 = (x+3)(x^2 - 3x + 9).$ So we see that $x = -3$ is a solution. But we also have solutions when $x^2-3x+9=0$, so we solve this with the quadratic formula to also get

$$
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(9)}}{2(1)} = \frac{3 \pm \sqrt{9 - 36}}{2}
$$

= $\frac{3 \pm \sqrt{-27}}{2} = \frac{3 \pm \sqrt{9(-3)}}{2} = \frac{3 \pm 3\sqrt{-3}}{2} = \frac{3 \pm 3\sqrt{3}i}{2} = \frac{3}{2} \pm \frac{3\sqrt{3}}{2}i$.
So the solutions are
 $x = -3$, $x = 3/2 + (3\sqrt{3}/2)i$, and $x = 3/2 - (3\sqrt{3}/2)i$ and the solution
set is $\left[\{-3, 3/2 + (3\sqrt{3}/2)i, 3/2 - (3\sqrt{3}/2)i\right]$.

Page A61 Number 78. Without solving, determine the character of the solutions of $x^2 + 6 = 2x$ in the complex number system.

Solution. We rewrite the equation as $x^2 - 2x + 6 = 0$ and consider the discriminant $b^2 - 4ac$ where $a = 1, b = -2$, and $c = 6$. We have $b^2 - 4ac = (-2)^2 - 4(1)(6) = 4 - 24 = -20$. Since $b^2 - 4ac = -20 < 0$ then the equation has two complex solutions that are not real (and are conjugates of each other).

Page A61 Number 78. Without solving, determine the character of the solutions of $x^2 + 6 = 2x$ in the complex number system.

Solution. We rewrite the equation as $x^2 - 2x + 6 = 0$ and consider the discriminant b^2-4ac where $a=1,\ b=-2,$ and $c=6.$ We have $b^2 - 4ac = (-2)^2 - 4(1)(6) = 4 - 24 = -20$. Since $b^2 - 4ac = -20 < 0$ then the equation has two complex solutions that are not real (and are conjugates of each other).