Section 1.2. Graphs of Equations in Two Variables; Intercepts; Symmetry

Note. In this section we graph equations by plotting points, find intercepts from a graph, find intercepts from an equation, and test equations for symmetries with respect to axes and the origin.

Definition. An equation in two variables, say x and y, is a statement in which two expressions involving x and y are equal. Any values of x and y that result in a true statement are said to satisfy the equation. The graph of an equation in two variables x and y is the set of all points (x, y) in the xy-plane where x and y satisfy the equation.

Example. Page 17 number 18.

Definition. The points, if any, at which a graph crosses or touches the coordinate axes are the *intercepts* of the graph. The x-coordinate of a point at which the graph crosses or touches the x-axis is an x-intercept and the y-coordinate of a point at which the graph crosses or touches the y-axis is a y-intercept.

Note. The procedure for finding intercepts is:

- To find the x-intercept(s), if any, of the graph of an equation, let y = 0 in the equation and solve for x.
- To find the y-intercept(s), if any, of the graph of an equation, let x = 0 in the equation and solve for y.

Example. Page 17 number 20. HINT: The graph is a line. In general, plotting points is an awful way to graph a function, but if you know the general shape of the function and you plot special points, *then* this is a good approach.

Definition. We consider three different types of symmetries of graphs:

- A graph is said to be symmetric with respect to the x-axis if, for every point (x, y)on the graph, the point (x, -y) is also on the graph.
- A graph is said to be symmetric with respect to the y-axis if, for every point (x, y) on the graph, the point (-x, y) is also on the graph.
- A graph is said to by symmetric with respect to the origin if, for every point (x, y)on the graph, the point (-x, -y) is also on the graph.

Examples. Page 17 numbers 48 and 56.

Note. To test the graph of an equation for symmetry with respect to the

- **x-Axis** Replace y by -y in the equation. If an equivalent equation results, the graph of the equation is symmetric with respect to the x-axis.
- **y-Axis** Replace x by -x in the equation. If an equivalent equation results, the graph of the equation is symmetric with respect to the *y*-axis.
- **Origin** Replace x by -x and y by -y in the equation. If an equivalent equation results, the graph of the equation is symmetric with respect to the origin.

Recall that two equations are *equivalent* if they have the same solution set (see Appendix A.6. Solving Equations).

Example. Page 18 number 72.

Note. We now loosely discuss the graphs of three special equations.

Examples. Page 11 Example 3 and Page 15 Example 10, and Page 16 Example 12.

Example. Page 18 number 84.

Revised: 8/25/2019