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Section 4.5. The Real Zeros of a Polynomial Function

Note. In this section we present and use the Remainder and Factor Theorems, use

Descartes’ Rule of Signs, use the Rational Zeros Theorem to find potential rational

zeros of a polynomial function, solve polynomial equations, use the Theorem for

Bounds on Zeros, and use the Intermediate Value Theorem.

Theorem 4.5.A. Division Algorithm for Polynomials. If f(x) and g(x)

denote polynomial functions and if g(x) is not the zero polynomial, then there are

unique polynomial functions q(x) and r(x) such that

f(x)

g(x)
= q(x) +

r(x)

g(x)
or f(x) = q(x)g(x) + r(x)

where r(x) is either the zero polynomial or a polynomial of degree less than that

of g(x). f(x) is the dividend, g(x) is the divisor, q(x) is the quotient, and r(x) is

the remainder.

Note. We can use the Division Algorithm (Theorem 4.5.A) to prove:

Theorem 4.5.B. Remainder Theorem. Let f be a polynomial function. If f(x)

is divided by x − c, then the remainder is f(c).

Theorem 4.5.C. Factor Theorem. Let f be a polynomial function. Then x− c

is a factor of f(x) if and only if f(c) = 0.

Note/Definition. The Factor Theorem tells us that finding zeros of a polynomial

and finding factors of the form x− c are exactly the same problem! Factors of

the form x − c are called linear factors.
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Example. Page 233 number 18.

Note. The next theorem is related to the Fundamental Theorem of Algebra.

Theorem 4.5.D. Number of Real Zeros. A polynomial function cannot have

more real zeros than its degree.

Note. In fact, as seen in the Fundamental Theorem of Algebra, the total number of

both real and complex zeros (counting multiple zeros according to their multiplicity)

equals the degree of the polynomial. The next theorem helps us count the number

of positive and negative real zeros.

Theorem 4.5.E. Descartes’ Rule of Signs. Let f denote a polynomial function

written in standard form.

The number of positive zeros of f either equals the number of variations in the

sign of the nonzero coefficients of f(x) or else equals that number less an even

integer.

The number of negative zeros of f either equals the number of variations in the

sign of the nonzero coefficients of f(−x) or else equals that number less an

even integer.

Example. Page 233 number 30.
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Note. Actually finding the zeros of a polynomial equation is an extremely difficult

problem (and sometimes, in a sense, an impossible problem). The next theorem

allows us to make a list of all possible rational zeros of a polynomial with integer

coefficients.

Theorem 4.5.F. Rational Zeros Theorem. Let f be a polynomial function of

degree 1 or higher of the form

f(x) = anx
n + an−1x

n−1 + · · · + a2x
2 + a1x + a0, where an 6= 0, a0 6= 0

where each coefficient is an integer. If p/q, in lowest terms, is a rational zero of f ,

then p must be a factor of a0, and q must be a factor of an.

Example. Page 233 number 42.

Note. The text book lists the following steps for finding the real zeros of a poly-

nomial function.

Step 1. Use the degree of the polynomial to determine the maximum number of

real zeros.

Step 2. Use Descartes’ Rule of Signs to determine the possible number of positive

zeros and negative zeros.

Step 3. (a) If the polynomial has integer coefficients, use the Rational Zeros The-

orem to identify those rational numbers that potentially could be zeros.

(b) Use substitution, synthetic division, or long division to test each potential

rational zero. Each time that a zero (and thus a factor) is found, repeat Step

3 on the depressed equation.
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In attempting to find the zeros, remember to use (if possible) the factoring tech-

niques that you already know (special products, factoring by grouping, and so on).

Example. Page 233 number 54.

Definition. A quadratic ax2 + bx + c is irreducible if it cannot be factored over

the real numbers; that is, if it is prime over the real numbers.

Note. A quadratic of the form x2+a where a > 0 has no real zeros since x2+a > 0

for all real x and hence there is no linear factor of x2 + a by the Factor Theorem,

Theorem 4.5.C. That is, x2 + a, a > 0, is irreducible. The next theorem tells us

how it is possible to factor a polynomial using only real numbers.

Theorem 4.5.G. Every polynomial function (with real coefficients) can be uniquely

factored into a product of linear factors and/or irreducible quadratic factors.

Note. We will prove Theorem 4.5.G in the next section using the Fundamental

Theorem of Algebra. You will use this result in Calculus 2 when integrating rational

functions. See my online Calculus 2 notes for 8.4. Integration of Rational Functions

by Partial Fractions. As a corollary to this result we have the following, the proof

of which depends on the end-behavior of an odd degree polynomial function f (for

sufficiently large x, f(x) and f(−x) are of opposite signs).

http://faculty.etsu.edu/gardnerr/1920/12/c8s4.pdf
http://faculty.etsu.edu/gardnerr/1920/12/c8s4.pdf
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Theorem 4.5.H. A polynomial function (with real coefficients) of odd degree has

at least one real zero.

Definition. A number M is an upper bound to the zeros of a polynomial f if no

zero of f is greater than M . The number m is a lower bound if no zero of f is less

than m. Accordingly, if m is a lower bound and M is an upper bound to the zeros

of a polynomial function f , then m ≤ any zero of f ≤ M.

Note. For polynomials with integer coefficients, knowing the values of a lower

bound m and an upper bound M may enable you to eliminate some potential

rational zeros; that is, any potential zeros outside of the interval [m, M ]. The next

theorem gives one way to find bounds M and m.

Theorem 4.5.I. Bounds on Zeros. Let f denote a polynomial function whose

leading coefficient is positive.

If M > 0 is a real number and f(x) = (x−M)q(x) + R where the coefficients of q

are nonnegative and remainder R is nonnegative, then M is an upper bound

to the zeros of f .

If m < 0 is a real number and f(x) = (x − m)q(x) + R where the coefficients of

q (in standard form) followed by R alternate positive (or 0) and negative (or

0), then m is a lower bound to the zeros of f .



4.5. The Real Zeros of a Polynomial Function 6

Example. Page 234 number 70.

Note. As observed above, actually finding the zeros of a polynomial function can

be difficult/impossible. So there is a body of mathematics devoted to locating

regions which contain the zeros of a polynomial. One classic example is due to

Augustin Cauchy and states that the zeros of polynomial function

f(x) = anx
n + an−1x

n−1 + · + a2x
2 + a1x + a0, where an 6= 0,

lie in the interval [m, M ] where

m = −1 − max{|a0/an|, |a1/an|, |a2/an|, . . . , |an−1/an|}

and

M = 1 + max{|a0/an|, |a1/an|, |a2/an|, . . . , |an−1/an|}.

For this and a number of related results (which actually involve both the real and

complex zeros of a polynomial) see R. Gardner and N. K. Govil, The Enestrom-

Kakeya Theorem and Some of Its Generalizations, in Current Topics in Pure and

Computational Complex Analysis, ed. S. Joshi, M. Dorff, and I. Lahiri, New Delhi:

Springer-Verlag (2014), 171-200.

Note. We commented in 4.1. Polynomial Functions and Models that polynomial

functions are continuous. The next result applies to continuous functions in general,

but is stated here for polynomial functions. You will see this result in Calculus 1

(see my online notes for 2.5. Continuity).

http://faculty.etsu.edu/gardnerr/pubs/Z16.pdf
http://faculty.etsu.edu/gardnerr/pubs/Z16.pdf
http://faculty.etsu.edu/gardnerr/pubs/Z16.pdf
http://faculty.etsu.edu/gardnerr/pubs/Z16.pdf
http://faculty.etsu.edu/gardnerr/1710/notes-Precalculus-10/Sullivan10-4-1.pdf
http://faculty.etsu.edu/gardnerr/1910/Notes-12E/c2s5.pdf
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Theorem 4.5.J. Intermediate Value Theorem. Let f denote a polynomial

function. If a < b and if f(a) and f(b) are of opposite sign, there is at least one

real zero of f between a and b.

Example. Page 234 number 80.

Note. We can also use the Intermediate Value Theorem to numerically approxi-

mate the zeros of a polynomial function. See Page 231 Example 10.

Note. The text book describes an interesting story concerning the history of

solving polynomial equations on page 232. It involves a cubic formula, similar to

the quadratic equation. In short, the quadratic formula (which gives all solutions to

the equation ax2+bx+c = 0) follows from completing the square and it was known

by both the Babylonians and (in a limited sense) the Egyptians. The general cubic

formula gives all solutions to the equation ax3 + bx2 + cx + d = 0 and was first

found by Tartaglia around 1535. The general quartic formula gives all solutions to

the equation ax4 + bx3 + cx2 + dx + e was first found by Ludovico Ferrari in 1540.

Surprisingly, the mathematical world got stuck and for about 300 years failed to find

a quintic formula giving the general solution to a 5th degree polynomial equation.

It was shown in the early 1800s that a quintic formula does not exist (first in the

work of Niels Henrik Abel in 1821 and later in a generalization by Évariste Galois

in 1830). For more details, see my online notes for Introduction to Modern Algebra

(MATH 4127/5127) on A Student’s Question: Why The Hell Am I In This Class?

http://faculty.etsu.edu/gardnerr/4127/notes/Why-am-I-here.pdf
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(this presentation describes the links between the classical algebra of this class

and the modern algebra you might study at the senior or graduate level). In the

supplement, we do 8 problems concerning the cubic formula.
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