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Appendices

A.1. Real Numbers and the Real Line

Note. In this appendix we discuss the real numbers and other collections of num-

bers. We represent the real numbers “geometrically” with the real number line.

We consider sets of real numbers, intervals, inequalities, absolute values, and the

interactions of these ideas.

Note. We deal with the real numbers informally in this appendix. See Appendix

A.6. Theory of the Real Numbers for a somewhat more formal approach. The

real numbers are developed axiomatically as a “complete ordered field” in ETSU’s

Analysis 1 (MATH 4217/5227); see my online notes for Section 1.2. Properties of

the Real Numbers as an Ordered Field and Section 1.3. The Completeness Axiom.

Note/definition. Thomas’ Calculus states that the “real numbers are the numbers

that can be expressed as decimals. . . .” The real numbers can then be associated

with the points on the real number line:

This is often called the geometric representation of the real numbers. The real

numbers are denoted R.

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/A6-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/A6-14E.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-2.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-2.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf


A.1 Real Numbers and the Real Line 2

Note/definition. The algebraic properties (or field properties) of the real numbers

deal with how the numbers interact under the operations of addition and multi-

plication. (The text book includes the operations of subtraction and division in

these properties, but neither is actual a mathematical operation! Subtraction is

just shorthand notation for adding an additive inverse and division is shorthand

for multiplying be a multiplicative inverse.) The additive identity zero, denoted

“0,” does not have a multiplicative inverse (and so there is no division by 0).

Note/definition. The order properties of the real numbers deal with the prop-

erties of the inequalities “greater than,” >, and “less than,” <. For distinct real

numbers a and b we write a < b or b > a when a is to the left of b on the real

number line (or, equivalently, b is the to right of a on the real number line). A list

of properties of inequalities which we assume is:

Let a, b, and c be real numbers.

1. If a < b then a + c < b + c.

2. If a < b then a− c < b− c.

3. If a < b and c > 0 then ac < bc.

4. If a < b and c < 0 then bc < ac.

5. If a > 0 then 1/a > 0.

6. For a and b both positive or both

negative, if a < b then 1/b < 1/a.
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Note/definition. The completeness property of the real numbers deals with the

fact that the real numbers form a continuum. As a consequence, the real number

line has no “holes” (or “gaps”) in it. This property is essential when considering

limits, which we cover in Chapter 2.

Note/definition. We often use set notation and terminology. A set is a collection

of objects (usually real numbers for us), called elements of the set. For set S, we

write a ∈ S to indicate that a is an element of set S. We write a 6∈ S if a is not

an element of set S. For sets S and T , the union of these two sets, S ∪ T , is the

set consisting of all elements in either set S or in set T . For sets S and T , the

intersection of these two sets, S ∩ T , is the set consisting of all elements in both

sets S and T . The empty set is the set with no elements, denoted ∅. Set S is a

subset of set T , denoted S ⊆ T , if every element of S is also an element of T ; T is

then called a superset of S.

Note. We sometimes present a set by listing its elements within a pair of set

brackets: A = {1, 2, 3, 4, 5}. We often describe subsets of a given set by putting a

condition on the elements of the subset: A = {x ∈ Z | 0 < x < 6}. This is read

“Set A equals the set of all x in the integers such that 0 is less than x is less than

6.” Notice that this is the set {1, 2, 3, 4, 5} again.
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Note/definition. We are interested in certain special subsets of the real numbers.

1. The natural numbers, N, is the set of numbers {1, 2, 3, 4, . . .}.

2. The integers, Z, is the set of numbers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

3. The rational numbers, Q, is the set of numbers {m/n | m, n ∈ Z and n 6= 0}.

4. The irrational numbers is the set of real numbers which are not rational: {x ∈

R | x 6∈ Q}.

Note. We are not too concerned about the sizes of sets, but a funny story is that

R, N, Z, and Q are all infinite sets. However, the sets N, Z, and Q are all sets of the

same size (they are “countable”) and the sets R and the set of irrational numbers

are the same size (they are “uncountable”). The surprise is that the countable sets

are not the same size as the uncountable sets! This means that some infinite sets are

larger than others!!! For more details, see my online notes for Analysis 1 (MATH

4217/5217) on 1.3. The Completeness Axiom; in particular, see the definition of

“same cardinality” sets, Theorem 1-20, and Theorem 1-21 (Cantor’s Theorem).

Definition. A subset of the real numbers is an interval if it contains at least two

numbers and contains all the real numbers lying between any two of its elements.

Note. We often describe intervals using inequalities or “interval notation.” Table

A.1 contains an example of each type of interval, along with the notation used to

represent it.

https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
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Definition. Notice that some intervals have one endpoint and some have two

endpoints (and one interval, (−∞,∞) = R, has no endpoints). An interval is

closed if it contains its endpoint(s). An interval is open if it does not contain its

endpoint(s). An interval is half-open if it has two endpoints and it contains exactly

one of them. An interval with two endpoints is a finite interval. If an interval is

not a finite interval then it is an infinite interval. The endpoints of an interval are

called the boundary points of the interval, and non-boundary points in an interval

are interior points of the interval.
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Note. We often express solutions to inequalities in terms of intervals.

Example. Exercise A.1.6. Find all x ∈ R satisfying
4

5
(x−2) <

1

3
(x−6) and show

the solution set on the real number line.

Definition. The absolute value function of x ∈ R, is defined as

|x| =

 x, x ≥ 0

−x, x < 0.

Note. We use the absolute value function to measure the distance between two

points on the real number line. If a, b ∈ R, then the distance between a and b is

|a − b| = |b − a|. When addressing limits in Chapter 2, we will have definitions

based on this measure of distance.

Note. Notice that we can algebraically define |x| as |x| =
√

x2. Remember,

for any nonnegative real number x,
√

x ≥ 0. That is, square roots (when they

exist) are never negative! So if we write
√

9 then we mean 3. We do not have
√

9 = ±3!!! The square root symbol represents the non-negative square root; if

you want both the positive and negative square roots of 9 then you need to “ask”

for them: ±
√

9 = ±3.
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Note. A list of properties of absolute value is the following:

Let a and b be real numbers.

1. | − a| = |a|.

2. |ab| = |a| |b|.

3. |a/b| = |a|/|b| where b 6= 0.

4. |a + b| ≤ |a|+ |b|.

Property 4 is called the Triangle Inequality.

Example. Exercise A.1.24. Prove the Triangle Inequality.

Note. We can relate intervals to absolute values as follows:

Let a be a positive real number.

5. |x| = a if and only if x = ±a.

6. |x| < a if and only if −a < x < a.

7. |x| > a if and only if x < −a or x > a.

8. |x| ≤ a if and only if −a ≤ x ≤ a.

9. |x| ≥ a if and only if x ≤ −a of x ≥ a.

Example. Exercise A.1.12, Exercise A.1.16, and Exercise A.1.20.
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