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Appendices

A.6. Theory of the Real Numbers

Note. In this appendix we attempt to rigorously define the real numbers. This

information is normally covered in ETSU’s Analysis 1 (MATH 4217/5227); see my

online notes for Section 1.2. Properties of the Real Numbers as an Ordered Field

and Section 1.3. The Completeness Axiom. Though a foundational part of calculus,

this material is not essential for the understanding of Calculus 1.

Note. We state the definition of the real numbers in terms of axioms. We have

algebraic axioms (or the “field axioms” which give the existence of certain real num-

bers and describe how addition and multiplication interact), order axioms (which

describe the ideas of “greater than” and “less than”), and the completeness prop-

erty (which makes the real numbers a continuum).

Definition. The real numbers R satisfy the following algebraic properties (these

are the field axioms):

A1. a + (b + c) = (a + b) + c for all a, b, c ∈ R, Associativity of Addition.

A2. a + b = b + a for all a, b ∈ R, Commutitivity of Addition.

A3. There exists a real number denoted “0” such that a + 0 = a for all a ∈ R,

Additive Identity.

A4. For each a ∈ R, there is a number b such that a + b = 0, Additive Inverses.

https://faculty.etsu.edu/gardnerr/4217/notes/1-2.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
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M1. a(bc) = (ab)c for all a, b, c ∈ R, Associtivity of Multiplication.

M2. ab = ba for all a, b ∈ R, Commutivity of Multiplication.

M3. There exists a real number denoted “1” such that a1 = a for all a ∈ R,

Multiplicative Identity.

M4. For each nonzero a ∈ R there is a number b ∈ R such that ab = 1, Multiplica-

tive Inverses.

D. a(b+c) = ab+ac for all a, b, c ∈ R, Distribution of Multiplication over Addition.

Note. Any algebraic structure satisfying the field axioms is called a “field.” In

addition to the real numbers R, the rational numbers Q and the complex numbers

C are fields.

Definition. The real numbers R satisfy the following order properties (these are

the order axioms):

O1. For any a, b ∈ R, either a ≤ b or b ≤ a, Comparability.

O2. If a ≤ b and b ≤ a then a = b, Law of Trichotomy.

O3. If a ≤ b and b ≤ c then a ≤ c, Transitivity.

O4. If a ≤ b then a + c ≤ b + c, Preservation of ≤ Under Addition.

O5. If a ≤ b and 0 ≤ c then ac ≤ bc, Preservation of ≤ Under Multiplication by

Non-negative numbers.
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Note. A field that satisfies the order axioms is an “ordered field.” In addition

to the real numbers R, the rational numbers Q are an ordered field. The complex

numbers C are a field but are not ordered (see my online notes on Ordering the

Complex Numbers).

Note. For the final axiom of the real numbers, we need a few additional definitions.

Definition. A number M is an upper bound for a set of numbers if all numbers in

the set are less than or equal to M . M is a least upper bound for a set S of numbers

if it is an upper bound for set S and no number N < M is also an upper bound

of S. An ordered field is complete if every nonempty set of field elements which is

bounded above has a least upper bound.

Definition. The real numbers satisfy the completeness property:

C1. The real numbers are complete, Axiom of Completeness.

Note. We therefore have that the real numbers are a complete ordered field. Notice

that the rational numbers Q are not complete since the set S = {x ∈ Q | x2 < 2}

of rational numbers has a rational upper bound (say 3), but it does not have a

rational least upper bound! Any candidate rational least upper bound would have

to be bigger than the irrational number
√

2, so there is another rational number

between
√

2 and the candidate rational least upper bound and this other number

https://faculty.etsu.edu/gardnerr/5510/Ordering-C.pdf
https://faculty.etsu.edu/gardnerr/5510/Ordering-C.pdf
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is also an upper bound of S, contradicting the possibility that the candidate is a

least upper bound of S.

Note. So the real numbers are a complete ordered field. . . but are there other

complete ordered fields? In fact, we can say that the real numbers are the complete

ordered fields, since it can be shown that all complete ordered fields are the same

(they are “isomorphic”). Details on this can be found in Which Numbers are Real?

by Michael Henle, Washington, DC: Mathematical Association of America, Inc.

(2012) (see Theorem 2.3.3 of page 48).

Note. Thomas’ Calculus states in Appendix A.6 that “The completeness property

is at the heart of many results in calculus.” Without completeness, the existence of

limits would not be insured. You have an intuitive feel for what a continuum is, and

it is really the Axiom of Completeness that makes the real numbers a continuum

(that is, the real number line has no holes or gaps in it).

Note. In connection with the idea of completeness and of a continuum, consider

the following story. Imagine that an airplane taxis down a runway (at height 0)

and takes to the air. Once in the air (i.e., when the height is positive), the plane

remains in the air (instead of, say, the wheels bouncing on the runway before the
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plane gains altitude). Also, the plane is either in the air (with positive height) or

on the ground (as long as a wheel is on the ground, we say that the plane is on the

ground and that the height is 0; the plane is not in the air until all parts of the

plane are off the ground). We ask the question: “Is there

(a) a first point (in time) at which the plane is in the air,

(b) a last point (in time) at which the plane is on the ground,

(c) both (a) and (b), or

(d) neither (a) nor (b)?”

My experience has revealed that students like answer (c). I fear this is because

they are thinking of the numbers as distributed one-after-another along the real

number line. But this isn’t the case! Between any two real numbers there is another

real number. So if there is both a last point in time at which the plane was on the

ground and a first point in time at which the plane was in the air, then where is it

between these two times? It can’t be on the ground since these are times after the

last point in time that it was on the ground. It can’t be in the air since these are

times before the first point in time that it is in the air! So the answer cannot be

(c).

Let h(t) be the function that gives the height of the plane at time t (so when

h(t) = 0 the plane is “on the ground” and when h(t) > 0 then the plane is “in

the air”). Consider the set of times that the plane is on the ground with height

h(t) = 0, say T = {t ∈ R | h(t) = 0}. Then T is a set of real numbers and, since

the plane does eventually take off, then set T has an upper bound. By the Axiom

of Completeness, set T has a least upper bound, say t`. Since t` is the least upper

bound for T , for all times t < t` the plane must be on the ground with h(t) = 0,
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and for all times t > t` the plane must be in the air with h(t) > 0. So the question

becomes h(t`) =?

Suppose h(t∗) > 0 for some time t∗. At some earlier time, say t∗∗, we must have

had the height of the plane as h(t∗)/2 which is also positive (see the figure below).

So there cannot be a first point in time when the plane is in the air! Implicit in

this story is that the function h is continuous (so we do not allow quantum leaps

in height!); we are actually applying the Intermediate Value Theorem (Theorem

2.11) here. So we cannot have h(t`) > 0 (since h(t) = 0 for all t < t`) and it must

be that h(t`) = 0. That is, there is a last point in time that the plane is on the

ground and the answer is (b).

Notice that the existence of t` is given by the Axiom of Completeness. If we only

considered rational times, then the above argument falls apart and it could be that

the answer is (d) (if, say, h(t) = 0 for t ∈ Q and t <
√

2, and h(t) > 0 for t ∈ Q

and t >
√

2).

Note. The Axiom of Completeness was first stated by Richard Dedekind (October

6, 1831 - February 12, 1916) in his 1872 work “Continuity and Irrational Numbers”

(a copy can be found online at Project Gutenberg). His approach did not use the

language of “upper bounds” and “least upper bounds,” but instead “cuts” of the

real number line (what today is called a “Dedekind cut”). It is surprising that a

https://www.gutenberg.org/files/21016/21016-pdf.pdf
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rigorous definition of the real numbers only dates from 150, or so, years ago!

Image from MacTutor History of Mathematics Archive

A Dedekind cut is a partitioning of the number line into two sets A and B such

that every element of set A is less than every element of set B (symbolically, a ∈ A

and b ∈ B implies a < b, A∩B = ∅, and A∪B = R). The Axiom of Completeness

then is stated as: “Exactly one of the following holds: (1) there is a largest number

in set A, or (2) there is a least number in set B.” In terms of the airplane example,

we have that the values of t for which the plane is on the ground form set A (that

is, A = T ), and the values of t for which the plane is in the air form set B. In that

example, there is a largest number in set A.
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