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Chapter 2. Limits and Continuity

Note. You already probably have an intuitive idea of what it means for a function

to be continuous. In this chapter, we develop the most fundamental idea behind

calculus, that of a limit. Limits are used to define all of the topics covered in

Calculus 1, 2, and 3 (. . . including continuity).

2.1. Rates of Change and Tangents to Curves

Note. Our text book motivates the study of limits in this section by considering

average rates of change and discussing instantaneous rates of change. They start

by discussing Galileo Galilei’s (1564–1642) description of an object in free fall.

Galileo Galilei (from MacTutor History of Mathematics Archive)

Galileo stated that the distance traveled by an object in free fall is y = 16t2 where

y is measured in feet and t is measured in seconds after the object is released. In

the first second, the object falls 16(1)2 = 16 feet and so its average speed over the

https://mathshistory.st-andrews.ac.uk/
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first second is 16 ft/1 sec = 16 ft/sec. In the first two seconds, the object falls

16(2)2 = 64 feet and so its average speed over the first 2 seconds is 64 ft/2 sec =

32 ft/sec. Between second 1 and second 2, the object moves 64 − 16 = 48 feet

and so its average speed over this period of time is 48 ft/1 sec = 48 ft/sec; so the

object is accelerating. More generally, if the distance an object has traveled is f(t)

at time t, then the objects average speed during the time interval [t1, t2] is found by

dividing the distance traveled (which is f(t2) − f(t1)) by the elapsed time (which

is t2 − t1):

Average speed over [t1, t2] =
distance traveled

elapsed time
=

∆y

∆t
=

f(t2)− f(t1)

t2 − t1
.

Here we have used the Greek letter ∆ (delta) to indicate a difference in values.

Example. Example 2.1.1. (We refer to examples and exercises from the book

by numbering them as chapter.section.example-number or chapter.section.exercise-

number.)

Note. If we calculate the average speed of a free falling object over the time

interval [t0, t0 + h] (a time interval of length h = ∆t) where y = 16t2, then we have

Average speed over [t0, t0 + h] =
16(t0 + h)2 − 16t20

(t0 + h)− t0

=
16(t0 + h)2 − 16t20

h
=

16(t0 + h)2 − 16t20
∆t

.

We are now interested in the instantaneous speed of the object. If we take the length

of the time interval to be very small, then this should give a good approximation

of the instantaneous speed at time t0. Of course we cannot divide by h = ∆t = 0;



2.1 Rates of Change and Tangents to Curves 3

you cannot now, nor at any point in your future mathematical career, divide by

zero! So we now make a table based on t0 = 1 sec and t0 = 2 sec, where we let

h = ∆t take on several “small” values. See Table 2.1.

It seems that the average speed on intervals starting at t0 = 1 are approaching the

value 32 ft/sec, and on intervals starting at t0 = 2 are approaching the value 64

ft/sec. With t0 = 1 and h 6= 0 we have

∆y

∆t
=

16(1 + h)2 − 16(1)2

h
=

16(1 + 2h + h2)− 16

h

=
32h + 16h2

h
=

h(32 + 16h)

h
= 32 + 16h since h 6= 0.

So, indeed, when h is “small” but not 0 then the average speed is “close to” 32

ft/sec. When t0 = 2, we similarly get that ∆y/∆t = 64 + 16h when h 6= 0 and for

h small (but not 0) then the average speed is close to 64 ft/sec. What we mean by

“small” and “close to” is the major concept of this class and the topic we address

in some detail in the next few sections.
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Note. We use the above observations to motivate the following definition. We

need the function f (or y = f(x)) to be defined on the interval [x1, x2] and we

consider the line secant to the graph of y = f(x) which passes through the points

P (x1, f(x1)) and Q(x2, f(x2)). We take h = ∆x = x2 − x1 (and largely use the

symbol h to represent the change in x over an interval). See Figure 2.1.

Figure 2.1

Definition. The average rate of change of y = f(x) with respect to x over the

interval [x1, x2] is

∆y

∆x
=

f(x2)− f(x1)

x2 − x1
=

f(x1 + h)− f(x1)

h

where h = x2 − x1 6= 0.

Example. Exercise 2.1.4.
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Note. We now informally define the slope of a curve at a point P on the curve.

At this stage, the slope of a line is defined, so we use this as a starting point. We

define the slope of a curve at a point P as the slope of the line tangent to the

curve at point P . To find this tangent line, we approximate it by lines secant to

the curve which pass through point P and another point on the curve, say point

Q. Since we know two points on the secant line, P and Q, we can find the slope of

the secant line. If we make point Q really close to point P , then the slope of the

secant line should be close to the slope of the tangent line. To find the exact slope

of the tangent line, requires that we take a limit—and limits are the topic of this

chapter.

Figure 2.3

Example. Example 2.1.3.

Examples. Exercises 2.1.14, 2.1.22, 2.1.26
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