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Chapter 2. Limits and Continuity

2.3 The Precise Definition of a Limit

Note. In this section, we give a mathematically rigorous definition of the limit of

a function. We’ll comment how the informal ideas from the previous section are

justified by this definition. The concept of a limit is the idea behind all of calculus!!!

You can perform the mechanical manipulations for most of the problems of this

class without a deep understanding of limits (but so can software, including various

websites such as Wolfram Alpha), but you cannot really understand the material

of this class (including applications) without some level of understanding of the

concept of a limit. So please invest some time in this section! But a warning: this

is a tricky concept that took the mathematical community around 100 years to

develop. . .

Note. Isaac Newton (December 25, 1642/January 4, 1643 – March 31, 1727)

in 1666 wrote a tract that included many of the ideas of this course, including

the Fundamental Theorem of Calculus (which we’ll see in Section 5.4). However,

his work was not published until after 1700. Gottfried Wilhelm Leibniz (July 1,

1646 – November 14, 1716) published two papers on calculus in 1684 and 1686.

This resulted in a long argument between Newton and Leibniz over who was the

first to invent or discover calculus (for details on this argument, see Jason Socrates

Bardi’s The Calculus Wars: Newton, Leibniz, and the Greatest Mathematical Clash

of All Time, Basic Books, 2007). A simple version of the history of the genesis of

calculus is that its properties were first studied by Newton and first published

https://www.wolframalpha.com/
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by Leibniz (this is oversimplified; Newton did not work in a vacuum and several

others were involved in calculus-type ideas in the 17th century, and much earlier

with Archimedes around 250 BCE).

Note. Archimedes, Newton, Leibniz and the rest did not have our formal defini-

tion of the limit of a function (in fact, our modern concept of a function appears

after the work of Newton and Leibniz). Our definition is due to the French math-

ematician Augustin Louis Cauchy (August 21, 1789 – May 23, 1857). It is Cauchy

that makes the informal ideas of “arbitrarily close” and “sufficiently close” for-

mal in the early 1800s. Calculus grew from a somewhat informal endeavor to a

mathematically rigorous area of study in the 1800s, and largely due to Augustin

Cauchy. His contributions are spelled out in Judith V. Grabiner’s The Origins of

Cauchy’s Rigorous Calculus, MIT Press, 1981 (today, this book is in print by Dover

Publications).
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(The Newton, Leibniz, and Cauchy pictures are from MacTutor History of Math-

ematics Archive.) This Calculus 1 class is about an introduction to the ideas and

manipulations of calculus, with an exposure to rigor but not an emphasis on rigor.

The rigorous approach to limits, derivatives, integrals, sequences, and series are

studied in ETSU’s senior-level classes Analysis 1 (MATH 4217/5217) and Analysis

2 (MATH 4227/5227). I have notes posted online for both Analysis 1 and Analysis

2.

Example. As the book does, we introduce the formal definition of limit with an

example. We consider Example 2.3.1.

Note. In the previous example, we wanted to make the function values within a

distance of 2 of a certain value. In the formal definition of limit, we will want to

make this distance arbitrarily small. In the following figure (from page 76 of the

book) we consider a function that gets close to the value L when input value x is

close to c. The figure shows, for distances between y = f(x) and L of 1/10, 1/100,

1/1000, 1/100, 000, and ε (the last case being issued as a “challenge”), how close

https://mathshistory.st-andrews.ac.uk/
https://mathshistory.st-andrews.ac.uk/
https://faculty.etsu.edu/gardnerr/4217/notes.htm
https://faculty.etsu.edu/gardnerr/4217/notes2.htm
https://faculty.etsu.edu/gardnerr/4217/notes2.htm
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x must be to c in order for |y − L| = |f(x)− L| to be less than the given distance.

The corresponding distances between x and c (which we measure as |x − c|) are

denoted δ1/10, δ1/100, δ1/1000, and δ1/100,000, respectively.

With the given desired distance between f(x) and L, denoted ε (the Greek letter

epsilon), we want to find a corresponding distance between x and c, denoted δ

(the Greek letter delta), such that when |x − c| < δ we have |f(x) − L| < ε.

Geometrically, this means that the graph of y = f(x) intersects the vertical sides
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of the little green box (where the horizontal and vertical bands intersect) and does

not intersect the horizontal sides of the little green box (except possibly at the

corners). Notice that none of the δ’s shown above can be made any larger, since

larger δ values will violate this intersection requirement between y = f(x) and the

little green boxes. As ε is made smaller, the δ likely must be made smaller, and the

little green box gets smaller. But, as long as the graph of y = f(x) “tries” to pass

through the point (c, L) (and so limx→c f(x) = L), the little green box will close

in around the point (c, L). This is why “Dr. Bobs Anthropomorphic Definition of

Limit” is equivalent to what we are about to state.

Definition. Formal Definition of Limit

Let f(x) be defined on an open interval about c, except possibly at c itself. We say

that f(x) approaches the limit L as x approaches c and write lim
x→c

f(x) = L, if, for

every number ε > 0, there exists a corresponding number δ > 0 such that for all x,

0 < |x− c| < δ implies |f(x)− L| < ε.

Note. We can now make the Informal Definition of Limit of the previous section

more formal and clear. We had informally claimed that limx→c f(x) = L if f(x)

gets “arbitrarily close” to L for all x “sufficiently close” to c (but not equal to

c). Since |f(x)− L| is the distance between f(x) and L (and so reflects how close

f(x) is to L), and |x − c| is the distance between x and c, then ε > 0 reflects the

arbitrarily close idea and δ > 0 reflects the sufficiently close idea. Since ε > 0

can be anything, then there is an arbitrariness to this distance. The value of δ
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then depends on the choice of ε, as in the figure above. Once ε > 0 is given, the

“challenge” is to find δ > 0 such that when 0 < |x − c| < δ then |f(x) − L| < ε.

This means that when the x values are in the blue band, then the function values

lie in the yellow band (and this is why the intersection of the graph of y = f(x)

must intersect the little green box as described above).

Note. The text book gives an illustration of the formal definition of limit in Figure

2.17. This is correct, but I prefer the following alternative illustration (which

includes the yellow and blue bands, and the little green box):

Notice that, in the formal definition of limx→c f(x) = L, we do not require that f is

defined at c and that we only are concerned with x values satisfying 0 < |x−c| < δ;

in particular, we avoid the value x = c. This is consistent with our observations

from the previous section that it does not matter what happens at x = c! What

matters, is the values of f(x) for x near (and not equal to) c. The ε and δ quantities

are what defines this nearness and “close to.”



2.3 The Precise Definition of a Limit 7

Note. You may hear limits described in terms of function values getting “closer

and closer” to a limit value (you may even hear that the function “never gets

there”). This is a common way try to convey the complicated idea of a limit, but

it is not correct! It is not about getting closer and closer; if anything, it is about

“getting close and staying close” (namely, f(x) gets within ε > 0 of L and stays

there for all 0 < |x−c| < δ). Since we require |f(x)−L| < ε, there is no prohibition

of f(x) taking on the value L (so f can “get there”); there is a prohibition against

x taking on the value c in the requirement that 0 < |x− c|, which implies x 6= c.

Note. We now illustrate the logic of the formal definition with a proof.

Example 2.3.A. Prove for f(x) = mx + b, m 6= 0, that lim
x→a

f(x) = f(a).

Note. Example 2.3.A concerns a function whose graph is a line of slope m 6= 0.

The text book gives a special case of this in Example 2.3.2 where a line of slope

m = 5 is considered. We now give another example (the first part of which is also

covered by Example 2.3.A).

Example. Example 2.3.3. Use the formal definition of limit to prove:

(a) limx→c x = c, (b) limx→c k = k where k is a constant.

Note. Dealing with finding δ values for a given ε value is more difficult when the

function has a graph that is not a line. We illustrate this first with an example.
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Example. Example 2.3.4. For the limit limx→5
√

x− 1 = 2 (true by the Root

Rule, Theorem 2.1(7)), find δ > 0 that works for ε = 1. That is, find a δ > 0 such

that

0 < |x− 5| < δ implies |
√

x− 1− 2| < 1.

Note. The previous example shows how we can use the graph of a function to

find a value of δ that corresponds to a given ε value. However, graphing a function

is very challenging (in fact, it is one of the things to which we apply calculus in

Sections 4.3 and 4.4). So we need an algebraic way to find values for δ. For a

function f which has a limit L at c, for a given ε > 0 we find a δ > 0 such that

0 < |x− c| < δ implies |f(x)− L| < ε,

or equivalently (as the book states it)

|f(x)− L| < ε whenever 0 < |x− c| < δ,

as follows.

1. Solve the inequality |f(x) − L| < ε to find an open interval (a, b) containing c

on which the inequality holds for all x 6= c (it doesn’t matter what happens

at x = c!).

2. Find a value of δ > 0 that places the open interval (c − δ, c + δ) centered at c

inside the interval (a, b). The inequality |f(x)− L| < ε will hold for all x 6= c

in this δ-interval.

Examples. Exercise 2.3.20, and Exercise 2.3.40 (this one is complicated!).
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Example 2.3.6. Prove the Sum Rule, Theorem 2.1(1): If lim
x→c

f(x) = L and

lim
x→c

g(x) = M, then

lim
x→c

(f(x) + g(x)) = lim
x→c

(f(x)) + lim
x→c

(g(x)) = L + M.

Note. If we negate the formal definition of limit, we see that we can show that

limx→c f(x) 6= L if there is some ε > 0 such that for all δ > 0 there exists some x

value satisfying 0 < |x − c| < δ and |f(x) − L| ≥ ε. This means that the ε > 0

value is “bad” in the sense that no matter how we choose δ > 0 there are still some

x values that violate the required distance conditions. In the figure below we have

chosen a bad ε > 0 such that no matter what δ > 0 is, there is a bad x value (given

in red).
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Example. Exercise 2.3.58. Use the comment above to show that (a) limx→2 h(x) 6=

4, (b) limx→2 h(x) 6= 3, (c) limx→2 h(x) 6= 2 for the piecewise defined function

h(x) =


x2, x < 2

3, x = 2

2, x > 2.
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