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Chapter 2. Limits and Continuity

2.6 Limits Involving Infinity; Asymptotes of Graphs

Note. In this section we give a calculus meaning to the symbol ∞. So far, you

have probably only seen this symbol in connection with unbounded intervals: R =

(−∞,∞), (−∞, 0] = {x ∈ R | x ≤ 0}, or (7,∞) = {x ∈ R | x > 7}. As the text

book comments, ∞ is not a number! You will never do arithmetic with the ∞

symbol. In a calculus class, ∞ is a limit. Since you are now familiar with formal

definitions of limits, we start there. We will also give an informal definition, but

won’t have an anthropomorphic definition this time (in part, because there is no

such thing as “close to ∞”).

Definition. Formal Definition of Limits at Infinity.

1. Let f be a function such that for some real number P , the domain of f includes

(P,∞). We say that f(x) has the limit L as x approaches infinity and we

write limx→∞ f(x) = L if, for every number ε > 0, there exists a corresponding

number M such that for all x

x > M implies |f(x)− L| < ε.

2. Let f be a function such that for some real number P , the domain of f includes

(−∞, P ). We say that f(x) has the limit L as x approaches negative infinity

and we write limx→−∞ f(x) = L if, for every number ε > 0, there exists a

corresponding number N such that for all x

x < N implies |f(x)− L| < ε.
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Definition. Informal Definition of Limits Involving Infinity.

1. Let f be a function such that for some real number P , the domain of f includes

(P,∞). We say that f(x) has the limit L as x approaches infinity and write

lim
x→∞

f(x) = L if f(x) gets arbitrarily close to L as x moves sufficiently far

from the origin in the positive direction.

2. Let f be a function such that for some real number P , the domain of f includes

(−∞, P ). We say that f(x) has the limit L as x approaches negative infin-

ity and write lim
x→−∞

f(x) = L if f(x) gets arbitrarily close to L as x moves

sufficiently far from the origin in the negative direction.

Note. Notice that when we write x → ∞ (or x → −∞) we do not mean that

x is close to infinity (there is no ∞ point on the real number line). Instead, we

refer to x as “moving sufficiently far from the origin in the positive direction”

(and analogously for x → −∞). We now give a proof of a result which will be

fundamental in our computations of limits as x → ±∞.

Example. Example 2.6.1(a). Prove that lim
x→∞

1

x
= 0.

Note. Similar to Example 2.6.1(a), we can show that lim
x→−∞

1

x
= 0. We simply

choose N = −1/ε in the proof (as is shown in Example 2.6.1(b).

Note. Each of the claims in Theorem 2.1 (Limit Rule) also holds as x → ±∞, as

follows.
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Theorem 2.12. Rules for Limits as x → ±∞.

If L, M , and k are real numbers and

lim
x→±∞

f(x) = L and lim
x→±∞

g(x) = M, then

1. Sum Rule: lim
x→±∞

(f(x) + g(x)) = lim
x→±∞

f(x) + lim
x→±∞

g(x) = L + M

2. Difference Rule: lim
x→±∞

(f(x)− g(x)) = lim
x→±∞

f(x)− lim
x→±∞

g(x) = L−M

3. Product Rule: lim
x→±∞

(f(x)g(x)) =

(
lim

x→±∞
f(x)

) (
lim

x→±∞
g(x)

)
= LM

4. Constant Multiple Rule: lim
x→±∞

(kf(x)) = k lim
x→±∞

f(x) = kL

5. Quotient Rule: lim
x→±∞

f(x)

g(x)
=

limx→±∞ f(x)

limx→±∞ g(x)
=

L

M
, M 6= 0

6. Power Rule: If n is a positive integer, then lim
x→±∞

(f(x))n =

(
lim

x→±∞
f(x)

)n

= Ln.

7. Root Rule: If n is a positive integer, then lim
x→c

n
√

f(x) = n

√
lim

x→±∞
f(x) =

n
√

L =

L1/n (if n is even, we also require that f(x) ≥ 0 on some interval of the form

(P,∞) in the event that x → ∞ , or f(x) ≥ 0 on some interval of the form

(−∞, P ) in the event that x → −∞).

Note. When dealing with limits as x → ±∞ for rational functions, we first divide

the numerator and denominator by the highest power of x in the denominator and

then use Examples 2.6.1(a) and (b).

Examples. Exercise 2.6.14 and Exercise 2.6.36.
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Note. We now take our first step (but not our last) in using calculus to graph a

function.

Definition. Horizontal Asymptote.

A line y = b is a horizontal asymptote of the graph of a function y = f(x) if either

lim
x→∞

f(x) = b or lim
x→−∞

f(x) = b.

Example. Exercise 2.6.68, find the horizontal asymptotes.

Example. Example 2.6.4. This example shows that a function can have two

horizontal asymptotes.

Example. Example 2.6.5: Prove lim
x→−∞

ex = 0.

Note. Theorem 2.10, “Limits of Continuous Functions,” holds for limits as x →

±∞:

Theorem 2.6.A. If g is continuous at the point b and lim
x→±∞

f(x) = b,

then

lim
x→±∞

g(f(x)) = g(b) = g

(
lim

x→±∞
f(x)

)
.

Example 2.6.A. Evaluate limx→∞ cos(1/x).
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Note. Theorem 2.4, “Sandwich Theorem,” holds for limits as x → ±∞:

Theorem 2.6.B. Suppose that g(x) ≤ f(x) ≤ h(x) for all x in

some open interval of the form (P,∞). Suppose that limx→∞ g(x) =

limx→∞ h(x) = L. Then limx→∞ f(x) = L.

Suppose that g(x) ≤ f(x) ≤ h(x) for all x in some open interval of

the form (−∞, P ). Suppose that limx→−∞ g(x) = limx→−∞ h(x) = L.

Then limx→−∞ f(x) = L.

Example. Example 2.6.8.

Note. In Example 2.6.8, we see that the graph of y = 2 +
sin x

x
has a horizontal

asymptote of y = 2. You may have hear it said before that an asymptote is

something that the graph of the function gets “closer and closer” to “but never

gets there.” This is simply wrong! As you can see from the graph of y = f(x) =

2 + (sin x)/x, f actually does “get to” it’s limit value of 2; in fact, f(x) = 2 for

every integer multiple of π except 0. In addition, the graph does not get closer

to the limit value of 2. In fact, on all intervals of the form (kπ, kπ + π/2), where

k is a positive integer, the graph is getting further away from 2 (as x increases)!

A similar observation holds for intervals of the form (kπ, kπ − π/2) where k is a

negative integer). See Figure 2.57 below. If you want a simple (correct) way to

informally explain horizontal asymptotes, then say that the graph “gets close to

and stays close to” the asymptote.
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Figure 2.57

If a rational function g has a horizontal asymptote, then it is true that for “suf-

ficiently large” values of x the graph of y = g(x) gets closer and closer to the

asymptote (as x gets larger) and does not “get there” (that is, take on the asymp-

totic value) for sufficiently large x. However, even in this case the g can intersect

the horizontal asymptote. For other details, see my brief publication R. Gardner,

Horizontal Asymptotes: What They are Not, The Mathematics Teacher (Reader

Reflections), February 1998, 152.

Example. Exercise 2.6.92.

Definition/Note. If the degree of the numerator of a rational function is one

greater than the degree of the denominator, the graph has an oblique asymptote

(or slant asymptote). The asymptote is found by dividing the denominator into the

numerator to express the function as a linear term plus a term that goes to zero as

x → ±∞.

https://faculty.etsu.edu/gardnerr/pubs/T3.pdf
https://faculty.etsu.edu/gardnerr/pubs/T3.pdf
https://faculty.etsu.edu/gardnerr/pubs/T3.pdf
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Note. In Example 2.6.10, the oblique asymptote of f(x) =
x2 − 3

2x− 4
is shown to be

y = x/2 + 1. The graph of y = f(x) is given in Figure 2.58. Notice that f also has

a vertical asymptote at x = 2 (we explore vertical asymptotes using limits next).

Figure 2.58

Example. Exercise 2.6.108, find the oblique asymptote.

Note. So far in this section, we have considered what happens when the input x

of a function f approaches ±∞. We now consider the possibility that the output

values f(x) can get arbitrarily large. To motivate our approach consider the graph

of y = f(x) = 1/x given in Figure 2.59 below.
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Figure 2.59

Consider what happens to the graph when x → 0+. As illustrated in Figure 2.59,

no matter how big positive number B is, the graph of y = 1/x can be made to lie

above B by making x sufficiently close to 0 and positive. As for x → 0−, no matter

how big negative number −B is, the graph of y = 1/x can be made to lie below −B

by making x sufficiently close to 0 and negative. This motivates us to introduce the

notation limx→0− 1/x = −∞ and limx→0+ 1/x = ∞. Notice that it is meaningless to

describe the function values as “getting close to” infinity (since there is no location

of ±∞ on the real number line); instead, we describe the function values as getting

arbitrarily large in the positive or negative direction. Notice from Figure 2.59 that

the graph of y = 1/x has a vertical asymptote at x = 0. We will use these types

of limits to define the term “vertical asymptote.” First, we formally define these

types of infinite limits. We present the definition for two-sided limits and observe

that these can be modified to address one sided infinite limits.



2.6 Limits Involving Infinity; Asymptotes of Graphs 9

Definition. Infinity, Negative Infinity as Limits. Let f be a function defined

on an open interval containing c, except possibly at c itself.

1. We say that f(x) approaches infinity as x approaches c, and we write limx→c f(x) =

∞, if for every positive real number B there exists a corresponding δ > 0 such

that for all x

0 < |x− c| < δ implies f(x) > B.

2. We say that f(x) approaches negative infinity as x approaches c, and we write

limx→c f(x) = −∞, if for every negative real number −B there exists a corre-

sponding δ > 0 such that for all x

0 < |x− c| < δ implies f(x) < −B.

Figures 2.62 and 2.63

Note. Informally, lim
x→c

f(x) = ∞ if f(x) can be made arbitrarily large by making

x sufficiently close to c (and similarly for f approaching negative infinity). We can

also define one-sided infinite limits in an analogous manner (see Exercise 2.6.99).
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Example 2.6.B. For n a positive even integer, prove that lim
x→0

1

xn
= ∞.

Definition. A line x = a is a vertical asymptote of the graph if either

lim
x→a+

f(x) = ±∞ or lim
x→a−

f(x) = ±∞.

Note. Recall that we look for the vertical asymptotes of a rational function where

the denominator is zero (though just because the denominator is zero at a point,

the function does not necessarily have a vertical asymptote at that point). We

make things more precise in the following result:

Dr. Bob’s Infinite Limits Theorem. Let f(x) =
p(x)

q(x)
. Suppose

lim
x→c

p(x) = L 6= 0, lim
x→c

q(x) = 0, and q(x) is of the same sign on some

open interval containing c, except possibly at c itself. Then lim
x→c

f(x) =

±∞. We can say something similar for one-sided limits.

Note. We can simplify Dr. Bob’s Infinite Limits Theorem by applying it to rational

functions. It then becomes: “Let f(x) =
p(x)

q(x)
be a rational function. Suppose

lim
x→c+

p(x) = L 6= 0 and lim
x→c+

q(x) = 0. Then lim
x→c+

f(x) = ±∞.” We can say

something similar for limits from the left.

Examples. Exercise 2.6.54 and Exercise 2.6.70.
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Note. The last topic in this section is a generalization of the idea of an oblique

asymptote. For a polynomial function f(x) = cnx
n+cn−1x

n−1+ · · ·+c2x
2+c1x+c0,

a dominant term as x → ±∞ is the function g(x) = cnx
n. The idea is that for x

large, f(x) and g(x) are roughly the same. More precisely, lim
x→±∞

f(x)

g(x)
= 1. So for

large x, the graph of y = f(x) and the graph of y = g(x) are close to each other.

We illustrate this with a specific example.

Example. Example 2.6.20.

Examples. Exercise 2.6.108 (again), Exercise 2.6.80, Exercise 2.6.102.
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