Chapter 3. Derivatives

3.11. Linearization and Differentials

Note. In this section we approximate functions (locally) with functions whose graphs are lines; these second functions are called "linearizations." Linearizations are based on tangent lines to a function. We will also finally give a proof of the Chain Rule (Theorem 3.2).

Definition. If f is differentiable at x = a, then the approximating function

$$L(x) = f(a) + f'(a)(x - a)$$

is the *linearization* of f at a. The approximation $f(x) \approx L(x)$ of f by L is the standard approximation of f at a. The point x = a is the *center* of the approximation.

Note. Since L(x) is the line tangent to the graph of y = f(x) at x = a, then we expect L(x) to be a good approximation of f(x) when x is close to a. See Figure 3.52.

Figure 3.52

Note. The text book repeatedly pushes the idea that if we magnify our view of the graph of y = f(x) near point (a, f(a)) then the graph of the linearization y = L(x) closely approximates y = f(x), with the greater magnification giving the better approximation. See Figures 3.53 and 3.54 where $f(x) = \sqrt{1+x}$ is linearized as L(x) = 1 + x/2 at a = 0 (this is Example 3.11.1).

FIGURE 3.53 The graph of $y = \sqrt{1 + x}$ and its linearizations at x = 0 and x = 3. Figure 3.54 shows a magnified view of the small window about 1 on the y-axis.

FIGURE 3.54 Magnified view of the window in Figure 3.53.

Example. Exercise 3.11.2.

Definition. Let y = f(x) be a differentiable function. The differential dx is an independent variable. The differential dy is

$$dy = f'(x) \, dx.$$

Examples. Exercise 3.11.28 and 3.11.38.

Note. Let f(x) be differentiable at x = a. The approximate change (the differential estimate of change) in the value of f when x changes from a to a + dx is the change

 ΔL in the linearization of f at a,

Note. If we know the value of a differentiable function f(x) at a point a and want to estimate the value of f when the x value changes from a to $a + \Delta x$, then with $\Delta x = dx$ we have

$$f(a + \Delta x) = f(a + dx) = f(a) + \Delta y \approx f(a) + dy.$$

So the change in f is $\Delta y \approx dy$ where dy (a function of x and dx) is evaluated at a as dy = f'(a) dx.

Example 3.11.A. Use differentials to estimate the value of $\sin 31^{\circ}$.

Example. Exercise 3.11.44.

Definition. We can compare actual changes in a function and the estimated change which is calculated from the use of differentials. We consider the absolute, relative, and percentage change:

	True	Estimated
Absolute change	$\Delta f = f(a + dx) - f(a)$	df = f'(a) dx
Relative change	$\frac{\Delta f}{f(a)}$	$\frac{df}{f(a)}$
Percentage change	$\frac{\Delta f}{f(a)} \times 100\%$	$\frac{df}{f(a)} \times 100\%$

Examples. Exercise 3.11.56 and Exercise 3.11.58.

Note. We now present a proof of the Chain Rule. First, we need a preliminary lemma.

Lemma 3.11.A. If y = f(x) is differentiable at x = a and x changes from a to $a + \Delta x$, the corresponding change Δy in f is given by $\Delta y = f'(a) + \varepsilon \Delta x$ in which $\varepsilon \to 0$ as $\Delta x \to 0$.

Theorem 3.2. The Chain Rule.

If f(u) is differentiable at the point u = g(x) and g(x) is differentiable at x, then the composite function $(f \circ g)(x) = f(g(x))$ is differentiable at x, and

$$(f \circ g)'(x) = f'(g(x))[g'(x)].$$

Revised: 10/12/2020