Chapter 3. Derivatives

3.11. Linearization and Differentials

Note. In this section we approximate functions (locally) with functions whose graphs are lines; these second functions are called "linearizations." Linearizations are based on tangent lines to a function. We will also finally give a proof of the Chain Rule (Theorem 3.2).

Definition. If f is differentiable at $x = a$, then the approximating function

$$
L(x) = f(a) + f'(a)(x - a)
$$

is the *linearization* of f at a. The approximation $f(x) \approx L(x)$ of f by L is the standard approximation of f at a. The point $x = a$ is the center of the approximation.

Note. Since $L(x)$ is the line tangent to the graph of $y = f(x)$ at $x = a$, then we expect $L(x)$ to be a good approximation of $f(x)$ when x is close to a. See Figure 3.52.

Figure 3.52

Note. The text book repeatedly pushes the idea that if we magnify our view of the graph of $y = f(x)$ near point $(a, f(a))$ then the graph of the linearization $y = L(x)$ closely approximates $y = f(x)$, with the greater magnification giving the better approximation. See Figures 3.53 and 3.54 where $f(x) = \sqrt{1+x}$ is linearized as $L(x) = 1 + x/2$ at $a = 0$ (this is Example 3.11.1).

FIGURE 3.53 The graph of $y = \sqrt{1 + x}$ and its linearizations at $x = 0$ and $x = 3$. Figure 3.54 shows a magnified view of the small window about 1 on the y-axis.

FIGURE 3.54 Magnified view of the window in Figure 3.53.

 0.2

Example. Exercise 3.11.2.

Definition. Let $y = f(x)$ be a differentiable function. The *differential dx* is an independent variable. The differential dy is

$$
dy = f'(x) \, dx.
$$

Examples. Exercise 3.11.28 and 3.11.38.

Note. Let $f(x)$ be differentiable at $x = a$. The approximate change (the differential estimate of change) in the value of f when x changes from a to $a+dx$ is the change ΔL in the linearization of f at a,

Figure 3.56

Note. If we know the value of a differentiable function $f(x)$ at a point a and want to estimate the value of f when the x value changes from a to $a + \Delta x$, then with $\Delta x = dx$ we have

$$
f(a + \Delta x) = f(a + dx) = f(a) + \Delta y \approx f(a) + dy.
$$

So the change in f is $\Delta y \approx dy$ where dy (a function of x and dx) is evaluated at a as $dy = f'(a) dx$.

Example 3.11.A. Use differentials to estimate the value of sin 31°.

Example. Exercise 3.11.44.

Definition. We can compare actual changes in a function and the estimated change which is calculated from the use of differentials. We consider the absolute, relative, and percentage change:

Examples. Exercise 3.11.56 and Exercise 3.11.58.

Note. We now present a proof of the Chain Rule. First, we need a preliminary lemma.

Lemma 3.11.A. If $y = f(x)$ is differentiable at $x = a$ and x changes from a to $a + \Delta x$, the corresponding change Δy in f is given by $\Delta y = f'(a) + \varepsilon \Delta x$ in which $\varepsilon \to 0$ as $\Delta x \to 0$.

Theorem 3.2. The Chain Rule.

If $f(u)$ is differentiable at the point $u = g(x)$ and $g(x)$ is differentiable at x, then the composite function $(f \circ g)(x) = f(g(x))$ is differentiable at x, and

$$
(f \circ g)'(x) = f'(g(x))[g'(x)].
$$

Revised: 10/12/2020