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Chapter 3. Derivatives

3.3. Differentiation Rules

Note. In this section we streamline the computation of derivatives by establishing

rules of differentiation that will allow us to quickly compute derivatives of compli-

cated functions. We state (and prove) the rules as theorems.

Note. If we think of a derivative as a rate of change, then we would expect the

derivative of a constant function to be 0, which it is as we now show.

Theorem 3.3.A. Derivative of a Constant Function.

If f has the constant value f(x) = c, then

df

dx
=

d

dx
[c] = 0.

Note. Some of the examples we saw in the previous two sections foreshadowed

the following. Speaking of examples, we will state several rules for differentiation

before working some examples.

Theorem 3.3.B. Derivative Power Rule for Positive Integers.

If n is a positive integer, then

d

dx
[xn] = nxn−1.
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Note. Theorem 3.3.B is to be interpreted as
d

dx
[x] = 1, even though with n = 1

we have nxn−1 = 1x0 which is 1 except at 0 where it is undefined (since “00” is not

defined).

Note. The Power Rule for Positive Integers actually holds for any real number.

We have not yet defined what it means to have an irrational exponent, but we

will do so when we explore exponential functions in more detail. At that time (in

Section 3.8) we will give a proof of the following. For now, we accept it as true.

Theorem 3.3.C. Derivative Power Rule (General Version).

If n is any real number, then

d

dx
[xn] = nxn−1

for all x where the powers xn and xn−1 are defined.

Note. Given that derivatives are defined in terms of limits, it is not surprising

that some of the rules of differentiation are similar to rules of limits. This is the

case for the following two results.

Theorem 3.3.D. Derivative Constant Multiple Rule

If u is a differentiable function of x, and c is a constant, then

d

dx
[cu] = c

du

dx
.
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Theorem 3.3.E. Derivative Sum Rule

If u and v are differentiable functions of x, then their sum u + v is differentiable at

every point where u and v are both differentiable. At such points,

d

dx
[u + v] =

du

dx
+

dv

dx
.

Note. Combining Theorems 3.3.D and 3.3.E, we have that for constants c1 and

c2, and for differentiable u and v that

d

dx
[c1u(x) + c2v(x)] = c1

d

dx
[u(x)] + c2

d

dx
[v(x)] = c1u

′(x) + c2v
′(x).

You may have the class Linear Algebra (MATH 2010) in your future; the quantity

c1u(x) + c2v(x) is a “linear combination” or u and v and for this reason differenti-

ation is called a linear operator. This allows to show the following, which is left as

a homework exercise.

Exercise 3.3.73. If P (x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x + a0, then P ′(x) =

nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ 2a2x + a1.

Examples. Exercises 3.3.4(a), Exercise 3.3.12(a), Exercise 3.3.34, and Example

3.3.4.
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Note. We now differentiate an exponential function f(x) = ax where a > 0. By

definition,

f ′(x) = lim
h→0

f(x + h)− f(x)

h

= lim
h→0

ax+h − ax

h

= lim
h→0

axah − ax

h

= lim
h→0

axah − 1

h

= ax lim
h→0

ah − 1

h
.

We claim without justification that lim
h→0

ah − 1

h
exists and is some number La

dependent on a. (For a clean discussion of this result, see sections 7.2 and 7.3 of

Thomas Calculus, Standard 11th Edition—notes are available online at 7.2. Natural

Logarithms and 7.3. The Exponential Functions. There is a version of this in the

14th Early Transcendentals edition in “Section 7.1. The Logarithm Defined as an

Integral”.) With x = 0, we have f ′(0) = a0 lim
h→0

ah − 1

h
= lim

h→0

ah − 1

h
= La. We

will see the precise value of La in Section 3.8. Derivatives of Inverse Functions and

Logarithms (it is La = ln a). Now f ′(0) is the slope of the graph of y = ax at x = 0.

Motivated by Figure 3.13, we see that there is a value of a somewhere between 2

and 3 such that this slope is 0.

https://faculty.etsu.edu/gardnerr/1920/11/c7s2.pdf
https://faculty.etsu.edu/gardnerr/1920/11/c7s2.pdf
https://faculty.etsu.edu/gardnerr/1920/11/c7s3.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/C3S8-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/C3S8-14E.pdf
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Figure 3.13

We define e to be the number for which the slope of the line tangent to y = ex is

m = 1 at x = 0. That is, we define e such that lim
h→0

eh − 1

h
= 1. One can determine

numerically (for a technique, see Section 3.8. Derivatives of Inverse Functions and

Logarithms) that e ≈ 2.7182818284590459. What is natural about the natural

exponential function ex is a calculus property—a differentiation property.

Theorem 3.3.F. Derivative of the Natural Exponential Function.

d

dx
[ex] = ex.

Example 3.3.A. Differentiate f(x) = x + 5ex.

Note. We now state two very useful rules. With these two rules in place, we are

almost done developing the rules of differentiation.

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/C3S8-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/C3S8-14E.pdf
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Theorem 3.3.G. Derivative Product Rule.

If u and v are differentiable at x, then so is their product uv, and

d

dx
[uv] =

du

dx
v + u

dv

dx
= [u′](v) + (u)[v′].

Example 3.3.B. Differentiate f(x) = (4x3 − 5x2 + 4)(7x2 − x).

Theorem 3.3.H. Derivative Quotient Rule.

If u and v are differentiable at x and if v(x) 6= 0, then the quotient u/v is differen-

tiable at x, and
d

dx

[u

v

]
=

du
dxv − udv

dx

v2 =
[u′](v)− (u)[v′]

(v)2 .

Example. Exercise 3.3.20.

Note. In the previous two examples, we used a square bracket notation that can be

employed to make applications of the Derivative Product Rule and the Derivative

Quotient Rule simple fill-in-the-blank problems. In Example 3.3.B we had:

d

dx
[(4x3 − 5x2 + 4)(7x2 − x)] = [12x2 − 10x](7x2 − x) + (4x3 − 5x2 + 4)[14x− 1].

In Exercise 3.3.20 we had

d

dt

[
t2 − 1

t2 + t− 2

]
=

[2t](t2 + t + 2)− (t2 − 1)[2t + 1]

(t2 + t− 2)2 .

This suggests my “square bracket notation” that can be used to draw a picture of

both the Derivative Product and Derivative Quotient Rules. We draw the Deriva-

tive Product Rule (Theorem 3.3.G) as:

d

dx
[( )( )] = [ ] ( ) + ( ) [ ] .
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We use the parentheses to represent quantities that have not been differentiated and

we use the square brackets to represent quantities that have been differentiated,

as required by the Derivative Product Rule. Similarly, we draw the Derivative

Quotient Rule (Theorem 3.3.H) as:

d

dx

[
( )

( )

]
=

[ ]( )− ( )[ ]

( )2 .

Again, the parentheses contain quantities that have not been differentiated and

the square brackets contain quantities that have been differentiated, as required

by the Derivative Quotient Rule. In both cases, you need to know what goes

where, but this notation helps with the “bookkeeping” needed in a complicated

differentiation problem, especially one that involves multiple applications of the

Derivative Product and Derivative Quotient Rules. A word of warning: The

square brackets do not mean “take the derivative of the quantity inside,” but instead

mean that the quantity inside is the derivative of some part of the original given

function! The symbols “
d

dx
[ ]” are used to represent that a quantity is meant to

be differentiated. We will also use this notation when we differentiate compositions

of functions in Section 3.6. The Chain Rule. For more details on my square bracket

notation, see R. Gardner, A Useful Notation for Rules of Differentiation, published

in The College Journal of Mathematics, 24(4) (1993) 351-352, and reprinted in The

Calculus Collection: A Resource for AP and Beyond, pages 257-58, edited by C.

Diefenderfer and R. Nelsen, The Mathematical Association of America, 2010.

Exercise 3.3.48. Differentiate f(x) =
(x2 + x)(x2 − x + 1)

x4 .

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/C3S6-14E.pdf
https://faculty.etsu.edu/gardnerr/pubs/T1.pdf
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Examples. Exercise 3.3.78 and Exercise 3.3.77(a,b).

Note. We see from Exercise 3.3.77 that for differentiable functions u1, u2, u3, u4 we

have
d

dx
[u1u2u3] = [u′1](u2)(u3) + (u1)[u

′
2](u3) + (u1)(u2)[u

′
3]

and

d

dx
[u1u2u3u4] = [u′1](u2)(u3)(u4)+(u1)[u

′
2](u3)(u4)+(u1)(u2)[u

′
3](u4)+(u1)(u2)(u3)[u

′
4].

The pattern is pretty clear from the square bracket notation, and we could use

Mathematical Induction (see Appendix A.2 and Example A.2.B) to prove to show

that the pattern holds for the product of any number of differentiable functions.

Namely, to differentiate a product of n differentiable functions, u1, u2, u3, . . . , un−1, un,

we add together n copies of the product u1u2u3 · · ·un−1un, but we differentiate u1

in the first product, differentiate u2 in the second product, and so forth up to the

last (the nth) product. In terms of the square bracket notation per se, we have:

d

dx
[( )( )( ) · · · ( )( )] = [ ]( )( ) · · · ( )( )

+( )[ ]( ) · · · ( )( )

+( )( )[ ] · · · ( )( ) + · · ·

+( )( )( ) · · · [ ]( )

+( )( )( ) · · · ( )[ ].

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/A2-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/A2-14E.pdf
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Note. If f is a differentiable function with derivative f ′, then we could potentially

differentiate f ′ to find the second derivative, f ′′, of f . With y = f(x) we have the

notations

f ′′(x) =
d

dx

[
dy

dx

]
=

d2y

dx2 = y′′.

We can similarly calculate higher order derivatives:

y′′′ = y(3) =
d

dx
[y′′], y(4) =

d

dx
[y′′′], . . . , y(n) =

d

dx
[y(n−1)].

Examples. Exercise 3.3.42, Exercise 3.3.66, and Exercise 3.3.80.
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