Chapter 3. Derivatives

3.5. Derivatives of Trigonometric Functions

Note. In Section 2.4. One-Sided Limits, we used the Sandwich Theorem (Theorem 2.4) to show that $\lim_{h\to 0} \frac{\sin h}{h} = 1$ (in Theorem 2.7) and $\lim_{h\to 0} \frac{\cos h - 1}{h} = 0$ (in Example 2.4.5(a)). We now use these limits to find the derivatives of sine and cosine; then we can find the derivatives of the remaining four trigonometric functions.

Note. Recall the summation formula for $\sin x$ which states that for all real numbers a and b,

$$\sin(a+b) = \sin a \cos b + \cos a \sin b.$$

Theorem 3.5.A. Derivative of the Sine Function

$$\frac{d}{dx}[\sin x] = \cos x$$

Example. Exercise 3.5.2.

Note. Recall the summation formula for $\cos x$ which states that for all real numbers a and b,

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

Theorem 3.5.B. Derivative of the Cosine Function

$$\frac{d}{dx}[\cos x] = -\sin x$$

Example. Example 3.5.3, Simple Harmonic Motion.

Examples. Exercise 3.5.28, Example 3.5.5, and Exercise 3.5.60.

Theorem 3.5.C. In summary, we have the following derivatives of the six trigonometric functions:

f	f'
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec^2 x$
$\cot x$	$-\csc^2 x$
$\sec x$	$\sec x \tan x$
$\csc x$	$-\csc x \cot x$

Example. Exercise 3.5.40 and Exercise 3.5.50.

Revised: 8/4/2020