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Chapter 3. Derivatives

3.7. Implicit Differentiation

Note. In this section we define what it means for a function to be implicit to

an equation and we give a process by which we can compute derivatives of such

functions.

Definition. The function f(x) is implicit to the equation F (x, y) = 0 if the

substitution y = f(x) into the equation yields an identity.

Example. Consider the equation x2 + y2 = 1, which has as its graph the unit

circle centered at the origin:

The function f(x) =
√

1− x2 is implicit to the equation x2 + y2 = 1, since with

y = f(x) we have x2 + y2 = x2 + (f(x))2 = x2 +
(√

1− x2
)2

= x2 + (1 − x2) = 1.

The function g(x) = −
√

1− x2 is implicit to the equation x2 + y2 = 1, since with

y = g(x) we have x2 + y2 = x2 + (g(x))2 = x2 +
(
−
√

1− x2
)2

= x2 + (1− x2) = 1.
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Notice the graphs of these two functions have domain [−1, 1] and their graphs

coincide with part of the graph of x2 + y2 = 1:

These are the only continuous functions defined on [−1, 1] which are implicit to

x2 + y2 = 1. However, there are infinitely many discontinuous functions implicit to

the equation. Here are two such functions:

Note. If y = f(x) is a function implicit to F (x, y) = 0, then we can generate an

equation containing dy/dx by differentiating “implicitly.” This follows by applying

the Chain Rule. Since a function is not (necessarily) uniquely determined by an

equation, we may not get an explicit formula for dy/dx in terms of x values only.
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Example. Suppose y = f(x) is implicit to x2 + y2 = 1. Then differentiating

implicitly:

d

dx
[x2 + y2] =

d

dx
[1]

d

dx
[x2] +

d

dx
[y2] =

d

dx
[1]

d

dx
[x2] +

d

dx
[(f(x))2] =

d

dx
[1]

2x +
y

2f(x)[f ′(x)] = 0

2x +

y

2y

[
dy

dx

]
= 0

2y
dy

dx
= −2x

dy

dx
= −x

y
.

Notice that dy/dx involves both x and y. This is because we cannot find the

slope of a line tangent to the graph of F (x, y) = 0 without knowing the x and y

coordinates of the point of tangency. That is, for a given x value there are multiple

corresponding y values (exactly two such y values for each x ∈ (−1, 1)).

Example 3.7.A. Find the slope of the line tangent to x2 + y2 = 1 at (x, y) =

(
√

2/2,
√

2/2). Do the same for the point (x, y) = (
√

2/2,−
√

2/2).

Examples. Exercise 3.7.16 and Exercise 3.7.20.

Definition. A line is normal to a curve at a point if it is perpendicular to the

curve’s tangent line. The line is called the normal to the curve at the point.
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Note. When light enters a lens, the angle that the ray of light makes with the

normal line to the lens (angle A in Figure 3.33) and the angle the ray of light makes

with the normal line to the lens once the ray is inside the lens (angle B in Figure

3.33) are related by Snell’s Law which state nA sin A = nB sin B where nA is the

refractive index of the medium outside the lens (presumably air) and nB is the

refractive index of the medium out of which the lens is made (presumably glass).

So there are physical reasons to have an interest in the normal line to a curve (the

curve here being a profile curve of the lens).

Figure 3.33

Examples. Exercise 3.7.40 and Exercise 3.7.44.

Note. Just as we can use the Chain Rule to find the derivative of a function implicit

to an equation, we can also use it to find second (and higher) order derivatives of

implicit functions.

Example. Exercise 3.7.22.

Examples. Exercise 3.7.48 and Exercise 3.7.50.
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