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Chapter 3. Derivatives

3.8. Derivatives of Inverse Functions and Logarithms

Note. In this section we explore the relationship between the derivative of an

invertible function and the derivative of its inverse. This leads us to consider

derivatives of logarithmic and exponential functions.

Note. Recall that the graph of a one-to-one function f and its inverse f−1 are

mirror images of each other about the line y = x. In Figure 3.37 we see the graph

of the one-to-one function f(x) = x2, x ≥ 0, and its inverse f−1(x) =
√

x. Notice

that the points (4, 2) and (2, 4) are mirror images of each other about the line y = x;

the slope of y = f(x) = x2, x ≥ 0 at (2, 4) is 4 and the slope of y = f−1(x) =
√

x

at (4, 2) is 1/4. This reciprocal relationship is not a coincidence.

Figure 3.37
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Theorem 3.3. The Derivative Rule for Inverses

If f has an interval I as its domain and f ′(x) exists and is never zero on I, then

f−1 is differentiable at every point in its domain. The value of (f−1)′ at a point b

in the domain of f−1 is the reciprocal of the value of f ′ at the point a = f−1(b):

df−1

dx

∣∣∣∣
x=b

=
1

df
dx

∣∣∣
x=f−1(b)

.

Example. Exercise 3.8.8.

Note. Since we can differentiate ex and ln x is the inverse of ex, then we can use

Theorem 3.3 to differentiate ln x.

Theorem 3.8.A. For x > 0 we have

d

dx
[ln x] =

1

x
.

If u = u(x) is a differentiable function of x, then for all x such that u(x) > 0 we

have

d

dx
[ln u] =

d

dx
[ln u(x)] =

y
1

u

[
du

dx

]
=

y
1

u(x)
[u′(x)].

Note. We can apply the previous theorem to show that
d

dx
[ln |x|] =

1

x
for x 6= 0

(see Example 3.8.3(c)).

Examples. Exercise 3.8.16, Exercise 3.8.30, and Exercise 3.8.38.
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Note. The previous example suggests that the computation of certain derivatives

(those involving lots of products and quotients, or raising to powers) can be sim-

plified by first taking a natural logarithm. This technique is called logarithmic

differentiation and requires the use of the Chain Rule (Theorem 3.2). We illustrate

it with an example.

Example. Exercise 3.8.52: Find y′ by first taking a natural logarithm and then

differentiating implicitly: y =

√
(x + 1)10

(2x + 1)5 .

Note. When a ∈ R, by an where n is a positive integer, we mean (a)(a) · · · (a) (n

times). When−m is a negative integer, by a−m we mean 1/am = (1/a)(1/a) · · · (1/a)

(m times). For m/n a rational number, by am/n we mean n
√

am (provided this is

defined and we avoid even roots of negative numbers). So this takes care of defin-

ing ar for r an integer or rational number (provided a > 0 or a < 0 and we avoid

the even roots of negatives problem). Now what if r is irrational? We now use

the natural exponential function to define what it means to raise a positive real

number to any real number power, including irrational powers.

Definition. For any numbers a > 0 and for any real x, ax = ex ln a.

Note. Now that we have introduced a new function, ax, we want to differentiate

it.
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Theorem 3.8.B. If a > 0 and u is a differentiable function of x, then au is a

differentiable function of x and

d

dx
[au] =

y

(ln a)au

[
du

dx

]
.

Note. Notice that the previous theorem implies that
d

dx
[ax] = ax ln a. With

a = e, we have the special case
d

dx
[ex] = ex(1) = ex. Again, this is what is natural

about e. When you first meet the natural exponential and logarithmic functions in

algebra, it is hard to understand what is NATURAL about them. That is because

the “natural-ness” is a calculus property (namely this differentiation property).

Note. We saw in Section 3.3 that
d

dx
[ax] = ax

(
lim
h→0

ah − 1

h

)
. We said then that

the limit exists. We now see that the limit is lim
h→0

ah − 1

h
= ln a = La. In particular,

for a = e, lim
h→0

eh − 1

h
= ln e = 1.

Example. Exercise 3.8.70.

Definition. For any a > 0, a 6= 1, define loga x =
ln x

ln a
. (This is called the change

of base formula. See Section 1.6.)

Note. Now that we have introduced a another new function, loga x, we want to

differentiate it.
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Theorem 3.8.C. Differentiating a logarithm base a gives:

d

dx
[loga u] =

y
1

ln a

1

u

[
du

dx

]
.

Examples. Exercise 3.8.74 and Exercise 3.8.80.

Example. Exercise 3.8.90: Use logarithmic differentiation to find dy/dx: y = xx+1.

Definition. For any x > 0 and for any real number n, define xn = en lnx.

Note. From the definition of ax, where a > 0, as ax = ex ln a, we see that the

previous definition follows by taking a = x and n = x in ax = ex ln a. We can now

prove the General Power Rule for Derivatives (Theorem 3.3.C) from Section 3.3.

Theorem 3.3.C/3.8.D. General Power Rule for Derivatives.

For x > 0 and any real number n,

d

dx
[xn] = nxn−1.

If x < 0, then the formula holds whenever the derivative, xn, and xn−1 all exist.

Example. Example 3.8.72: Differentiate y = t1−e.
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Note. We gave an approximation of the irrational number e in Section 3.3 of

e ≈ 2.7182818284590459. In the next theorem we give an exact value of e. . . but

we give it as a limit.

Theorem 3.4. The Number e as a Limit

We can find e as a limit:

e = lim
x→0

(1 + x)1/x.

Note. By computing (1+x)1/x for “really small” values of x, we can get a decimal

approximation of e, as stated above.

Example. Exercise 3.8.102.
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