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Chapter 5. Integrals

Note. On the first page of this chapter, the text book states that “A great achieve-

ment of classical geometry was obtaining formulas for the areas and volumes of

triangle, spheres, and cones.” Informally, it is easy to find the area of a region with

flat sides (it can be partitioned into triangles and it’s easy to find the area of a

triangle). The areas of “curvey” things, such as circles and areas bounded by part

of a parabola are harder to find (as are volumes of such curvey things as spheres

and cones). These areas and volumes were introduced into “classical geometry”

largely by Archimedes (287–212 bce). Euclid (circa 300 bce) in his Elements of

Geometry, Book XII, Proposition 2 shows that the area of a circle is proportional to

the square of the radius of the circle. The constant π is (by definition) the ratio of

the circumference of a circle to the diameter of the circle (so that the circumference

of a circle of radius r is 2πr). Archimedes in his Measurement of a Circle proved

that the area of a circle of radius r is πr2. He also famously demonstrated in this

work that π ≈ 22/7 (he proved that 22
7 < π < 310

71). With the area of a circle

established, it is then easy to find the volume of a right circular cylinder (in this

case, V = πr2h where r is the radius and h is the height). Euclid states in Book

XII, Proposition 10 of his Elements that the volume of a cone is 1/3 of the volume

of a cylinder of the same radius and height (implying the volume of a right circular

cone of base radius r and height h is V = 1
3πr2h).

Archimedes in On the Sphere and Cylinder also proves that for a sphere of

radius r, the surface area is S = 4πr2 and the volume is V = 4
3πr3. Euclid uses the

“method of exhaustion” to establish his results; in this one assumes, for example,

that the volume of a right circular cone is less than 1
3πr2h to get a contradiction
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and then assumes the volume is more than 1
3πr2h and gets another contradiction.

Archimedes uses a technique similar to what we introduce in this chapter in finding

the area bounded by a straight line and a parabola in The Method (of Mechanical

Theorems). We will be very capable of finding such areas ourselves, but we have

the advantage of over 2,000 years of mathematical advancements at our disposal

that Archimedes didn’t have!

Euclid (circa 325–265 BCE) Archimedes (287–212 BCE)

Images from MacTutor History of Mathematics Archive.

For more details, see my online presentation “Archimedes: 2,000 Year Ahead of

His Time,” the impressive website of David Joyce Euclid’s Elements online, and

The Works of Archimedes on GoogleBooks (each accessed 8/16/2020).

5.1. Area and Estimating with Finite Sums

Note. In this section we introduce a technique by which we approximate the area

under a curve by partitioning the area into rectangles (the area of each rectangle

is easy to find) and adding up the areas of the rectangles. We make the estimation

https://mathshistory.st-andrews.ac.uk/
https://faculty.etsu.edu/gardnerr/talks/Archimedes.ppt
https://faculty.etsu.edu/gardnerr/talks/Archimedes.ppt
https://mathcs.clarku.edu/~djoyce/java/elements/elements.html
https://books.google.com/books/about/The_Works_of_Archimedes.html?id=OCwl1dK0_U8C
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precise in the next section and find a shortcut to calculating these areas which

involve antiderivatives in the third section of this chapter.

Example 5.1.A. We estimate the area under y = 1− x2 and above the x-axis for

x ∈ [0, 1]. See Figure 5.1

First, we cut the region into two parts of equal width and then introduce rectangles

with heights determined from function values. See Figure 5.2(a). We use the left

hand endpoints of the two intervals on the x-axis which are determined by cutting

the region. We then have that the sum of the areas of the resulting two rectangles

is A = (1)(0.5) +

(
3

4

)
(0.5) =

7

8
= 0.875. We see from Figure 5.2(a) that this is

an overestimation of the desired area.

Second, we cut the region into four parts of equal width and again introduce rect-

angles with heights determined from function values. See Figure 5.2(b). We use

the left hand endpoints of the four intervals on the x-axis which are determined by

cutting the region. We then have that the sum of the areas of the resulting four rect-

angles is A = (1)(0.25)+

(
15

16

)
(0.25)+

(
3

4

)
(0.25)+

(
7

16

)
(0.25) =

25

32
= 0.78125.
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We see from Figure 5.2(b) that this is an overestimation of the desired area, but

a better estimate than when we cut the region into only two parts. Since both of

these estimations of the area are based on the maximum function value over each

little interval, these are called upper sums.

We could also use the minimum function value over each little interval to determine

the heights of rectangles, resulting in lower sums. When the region is cut into

four parts of equal width this leads to the sum of the areas or the rectangles:

A =

(
15

16

)
(0.25) +

(
3

4

)
(0.25) +

(
7

16

)
(0.25) + (0)(0.25) =

17

32
= 0.53125. See

Figure 5.3(a). Notice that we now have upper and lower bounds on the actual

desired area; we have that it is between
17

32
= 0.53125 and

25

32
= 0.78125.

Figure 5.3

Next, we try something that should give a better approximation. We use the

midpoint of each little interval to determine the heights of rectangles. See Figure

5.3(b). This leads to the sum of the areas of the rectangles:

A =

(
63

64

)
(0.25) +

(
55

64

)
(0.25) +

(
39

64

)
(0.25) +

(
15

64

)
(0.25) =

43

64
= 0.671875.

This technique is called the midpoint rule.
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Note. In each of the approximations above, the interval [a, b] was divided into n

subintervals of equal length ∆x = (b−a)/n, and f was evaluated at a point in each

subinterval, so x = ck was chosen from the kth subinterval and then f(ck) was used

as a height of a rectangle of areas f(ck)∆x (the terms “height” and “area” imply

that each f(ck) ≥ 0, which we had above). Each of the above sums were then of

the form:

f(c1)∆x + f(c2)∆x + f(c3)∆x + · · ·+ f(ck)∆x + · · ·+ f(cn−1)∆x + f(cn)∆x.

Notice that the smaller the width of the rectangles (in this case, given by making

the number n of rectangles larger), the better we expect the approximation to the

exact area to be. In Figure 5.4 we have n = 16; in (a) we use lower sums and in (b)

we use upper sums. In this case, the lower sum gives an area of 0.634765625 and

the upper sum gives an area of 0.697265625 (the midpoint rule for n = 16 gives an

area of 0.6669921875. We will see in the next section that the actual area of the

region is R = 2/3.

Figure 5.4
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Note. In Table 5.1, the lower sum, upper sum, and midpoint sum are given for

the number of subintervals n as 2, 4, 16, 50, 100, and 1000. Notice as n gets larger

each of the types of sum gets closer to R = 2/3. So we expect to find the exact

area by taking a limit of some of these sums(!).

Example. Exercise 5.1.6.

Note. We now consider a similar example to those above, but we consider a

velocity function v(t) of (as the book says) a car that moves in a straight line.

Since the velocity of the car changes with time, we take little “slices of time” (like

the subintervals above) and pick a time tk in the kth little slice of time to estimate

the velocity on that slice. With the slices of time each of length ∆t, the distance

traveled in the kth slice of time is estimated as v(tk)∆t (think “distance = rate ×

time”). If the time interval is [a, b], then we visualize the slices/subintervals and

the tk’s as:
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If we now sum the distances over all of the subintervals, we get an approximation

for the net distance traveled as:

D ≈ v(t1)∆t + v(t2)∆t + v(t3)∆t + · · ·+ v(tk)∆t + · · ·+ v(tn−1)∆t + v(tn)∆t.

Since velocity can be negative (and the “distance” that results from some of the

products make be negative; this corresponds to the car backing up, say), then

the approximation is to the displacement (that is, the final position minus the

initial position) instead of the total distance traveled. If we wished to find the

total distance traveled, we would replace the velocity function v(t) with the speed

function |v(t)| and the approximation to the total distance traveled is then:

|v(t1)|∆t + |v(t2)|∆t + |v(t3)|∆t + · · ·+ |v(tk)|∆t + · · ·+ |v(tn−1)|∆t + |v(tn)|∆t.

Example. Exercise 5.1.10.

Note. We know how to average a collection of numbers and now we want to

introduce an idea of how we might find the average of a continuous function f on

an interval [a, b]. We do so using the area under the function. In Figure 5.6(b)

we have the graph of continuous function g on the interval [a, b]. We want to find

a value c such that the “area” of a rectangle with base b − a (the length of the

interval [a, b]) and “height” c (shown in Figure 5.6(b)) is the same as the “area”
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under the the graph of g. We then define this value c as the average value of g on

[a, b]. We use quote marks since these terms are only used for positive quantities

and, since g could be negative, these quantities could be negative here. We can

approximate the “area” under the graph as above, and then approximate c as this

“area” divided by b− a.

Figure 5.6

Example. Exercise 5.1.16.

Example. Exercise 5.1.20.
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