Chapter 5. Integrals

5.2. Sigma Notation and Limits of Finite Sums

Note. In this section we introduce a shorthand notation for summation. We will use this summation notation in the next section when we define the *exact* area under a curve.

Note. We use the *sigma notation* to denote sums:

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + \dots + a_n.$$

The Greek letter Σ ("sigma," corresponding to our letter "S") stands for "sum." The *index of summation* k reflects where the sum begins and ends, and in general a_k is some function of k which gives the kth *term* of the sum:

Examples. Exercise 5.2.2 and Exercise 5.2.12.

Note. In Appendix A.2. Mathematical Induction, the following are established (see Exercise A.2.11).

Theorem 5.2.A. Algebra for Finite Sums.

1. Sum Rule: $\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$ 2. Difference Rule: $\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k$ 3. Constant Multiple Rule: $\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k$ 4. Constant Value Rule: $\sum_{k=1}^{n} c = nc$

Example. Exercise 5.2.18.

Note. In Appendix A.2. Mathematical Induction, the following are established (see Example A.2.5, Exercise A.2.9, and Exercise A.2.10).

Theorem 5.2.B. The Sum of Powers of the First n Natural Numbers.

- 1. The first *n* natural numbers: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
- 2. The first *n* natural numbers squared: $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ 3. The first *n* natural numbers cubed: $\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2.$

Examples. Exercise 5.2.24 and Exercise 5.2.28.

Definition. A partition of the interval [a, b] is a set

$$P = \{x_0, x_1, \dots, x_n\}$$
 where $a = x_0 < x_1 < \dots < x_n = b$

Partition P determines n closed subintervals

$$[x_0, x_1], [x_1, x_2], \dots, [x_{n-1}, x_n]$$

The length of the kth subinterval is $\Delta x_k = x_k - x_{k-1}$.

Note. We now estimate the area bounded between a function y = f(x) and the x-axis. We make the convention that the area bounded **above** the x-axis and below the function is **positive**, and the area bounded **below** the x-axis and above the curve is **negative**. We estimate this "area" by choosing a $c_k \in [x_{k-1}, x_k]$ and we use $f(c_k)$ as the "height" of a rectangle with base $[x_{k-1}, x_k]$. Then a partition P of [a, b] can be used to estimate this "area" by adding up the "area" of these rectangles. See Figure 5.9 below.

Figure 5.9

Definition. With the above notation, a *Riemann sum of* f *on the interval* [a, b] is a sum of the form

$$s_n = \sum_{k=1}^n f(c_k) \,\Delta x_k.$$

Example. Exercise 5.2.38.

Example 5.2.5. Partition the interval [0, 1] into n subintervals of the same width, give the lower sum approximation of area under $y = 1 - x^2$ based on n, and find the limit as $n \to \infty$ (in which case the width of the subintervals approaches 0).

Definition. The *norm* of a partition $P = \{x_0, x_1, \ldots, x_n\}$ of interval [a, b], denoted ||P||, is length of the largest subinterval:

$$||P|| = \max_{1 \le k \le n} \Delta x_k = \max_{1 \le k \le n} (x_k - x_{k-1}).$$

Note. If ||P|| is "small," then a Riemann sum is a "good" approximation of the "area" described above.

Note. If [a, b] is partitioned into n subintervals of equal length, then that length is $\Delta x_k = \Delta x = (b-a)/n$. In this case, if $n \to \infty$ then $||P|| \to 0$.

Example. Exercise 5.2.48.

Revised: 10/10/2020