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Chapter 5. Integrals

5.3. The Definite Integral

Note. In this section we define the definite integral of a function f over interval

[a, b]. We state properties of the definite integral (in Theorem 5.2), give several

examples, and define the average value of a function. In the next section we give

an easy way to calculate definite integrals involving antiderivatives.

Definition. Let f be a function defined on a closed interval [a, b]. We say that

a number J is the definite integral of f over [a, b] and that J is the limit of the

Riemann sums if the following condition is satisfied: Given any number ε > 0 there

is a corresponding number δ > 0 such that for every partition P = {x0, x1, . . . , xn}

of [a, b] with ‖P‖ < δ and any choice of ck ∈ [xk−1, xk], we have∣∣∣∣∣
n∑

k=1

f(ck) ∆xk − J

∣∣∣∣∣ < ε.

We denote J =

∫ b

a

f(x) dx and say that f is integrable on [a, b].

Note. If we compare the roles of
∑n

k=1 f(ck) ∆xk and J with a function, say F , of

the partition P and a limit L in the formal definition of limit in 2.3. The Precise

Definition of a Limit, and compare the values ‖P‖ and 0 to x and c, then we see

the correspondence

0 < |x− c| < δ implies |F (x)− L| < ε

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c2s3-14E.pdf
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with

0 < |‖P‖ − 0| < δ implies

∣∣∣∣∣
n∑

k=1

f(ck) ∆xk − J

∣∣∣∣∣ < ε.

Since the first statement is the definition of limx→c f(x) = L, then the second

statement corresponds to lim‖P‖→0
∑n

k=1 f(ck) ∆xk = J . Therefore we have

lim
‖P‖→0

n∑
k=1

f(ck) ∆xk =

∫ b

a

f(x) dx.

Example. Exercise 5.3.6.

Note. When we deal with applications of integration, we will often think of definite

integrals as sums. Notice, however, that strictly speaking they are not sums, but

they are limits of sums.

Note. We have now introduced three ideas, each different from the other, but each

related to the other (as we will see when we state the Fundamental Theorem of

Calculus). We have:

Name of Object Type of Object

ANTIDERIVATIVE FUNCTION

INDEFINITE INTEGRAL COLLECTION or SET

DEFINITE INTEGRAL NUMBER

Antiderivatives and indefinite integrals are related by the fact that the indefinite

integral of a function f is the set of all antiderivatives of f . The Fundamental

Theorem of Calculus, to be seen in the next section, will relate antiderivatives and

definite integrals (and therefore will relate definite and indefinite integrals).
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Note 5.3.A. In the previous section we saw examples of limits of Riemann sums

where each subinterval was the same size. Such a partition of [a, b] is often called a

“regular partition,” but our text book refers to this as “equal-width subintervals.”

If the definite integral exists (and we will soon see that if f is continuous on [a, b]

then the integral exists) then we can calculate it using an equal-width partition

of [a, b] with n subintervals by letting n → ∞ for associated Riemann sums. In

so doing, we partition [a, b] into n subintervals, each of length ∆x = (b − a)/n.

With the endpoints of the subintervals as a = x0, x1, . . . , xk, xk+1, . . . , xn = b we

have xk = a+k(b−a)/n, ck ∈ [xk−1, xk], and the Riemann sum
n∑

k=1

f(ck)

(
b− a

n

)
.

Then the value of the Riemann integral is

J =

∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f(ck)

(
b− a

n

)
.

Notice that the partition has norm ‖P‖ = (b − a)/n and so as n → ∞ then

‖P‖ → 0. If we choose ck ∈ [xk−1, xk] as ck = xk = a + k(b − a)/n (the right

endpoint of each subinterval) then this leads to the value of the Riemann integral

as:

J =

∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f

(
a + k

b− a

n

) (
b− a

n

)
.

Note. The next result gives a large class of functions (which includes continu-

ous functions) that are Riemann integrable. The idea behind the integrability of

continuous functions is given in Exercises 5.3.86 and 5.3.87. In Additional and Ad-

vanced Exercises 5.11 to 5.18 (at the end of Chapter 5) it is argued that “piecewise-

continuous functions” (which is a function continuous on [a, b], except for a finite

number of jump discontinuities) are also integrable, and this class is considered in

the theorem as well.
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Theorem 5.1. Integrability of Continuous Functions.

If a function f is continuous on an interval [a, b], or if f has at most finitely many

jump discontinuities there, then the definite integral

∫ b

a

f(x) dx exists and f is

integrable over [a, b].

Note. A rigorous proof of Theorem 5.1 for continuous functions requires the notion

of “uniform continuity.” This idea is introduced in Exercise 5.3.87. For the details

of a proof, see my online notes for Analysis 2 (MATH 4227/5227) on 6.1. The

Riemann Integral or The Riemann-Lebesgue Theorem (see Theorem 6-7).

Note. Not all functions are integrable. It turns out that a bounded function on

[a, b] is integrable if it is not “too badly discontinuous.” This is quite a long story

and is spelled out in detail in The Riemann-Lebesgue Theorem mentioned in the

previous note. The next example gives a non-integrable function.

Example 5.3.1. Show that the function f(x) =

 1, if x is rational

0, if x is irrational
is not

Riemann integrable over the interval [0, 1].

https://faculty.etsu.edu/gardnerr/4217/notes/6-1.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/6-1.pdf
https://faculty.etsu.edu/gardnerr/5210/Riemann-Lebesgue-Theorem.pdf
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Note. We now give rules of definite integrals. The first two rules are in fact

definitions. We give proofs of most of the remaining claims.

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g are

integrable over the interval [a, b]. Then:

1. Order of Integration:

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx (this in fact is a definition)

2. Zero Width Interval:

∫ a

a

f(x) dx = 0 (this too is a definition)

3. Constant Multiple:

∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx

4. Sum and Difference:

∫ b

a

(f(x)± g(x)) dx =

∫ b

a

f(x) dx±
∫ b

a

g(x) dx

5. Additivity:

∫ b

a

f(x) dx +

∫ c

b

f(x) dx =

∫ c

a

f(x) dx

6. Max-Min Inequality: If max f and min f are the maximum and minimum values

of f on [a, b], then

min f · (b− a) ≤
∫ b

a

f(x) dx ≤ max f · (b− a).

7. Domination: f(x) ≥ g(x) on [a, b] ⇒
∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx.
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Note. Figure 5.11 gives illustrations of Theorem 5.2 parts 2–7:

Figure 5.11

Example. Exercise 5.3.10.

Example. Exercise 5.3.63: Let c be a constant. Prove that

∫ b

a

c dx = c(b − a).

This is the text book’s equation (3).

Example 5.3.A. Use a regular partition of [a, b] with ck = xk to prove that for

a < b:

∫ b

a

x dx =
b2

2
− a2

2
. This is the text book’s equation (2).
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Example. Exercise 5.3.65: Use a regular partition of [a, b] with ck = xk to prove

that for a < b:

∫ b

a

x2 dx =
b3

3
− a3

3
. This is the text book’s equation (4).

Example. Exercise 5.3.36.

Definition. If y = f(x) is nonnegative and integrable over a closed interval [a, b],

then the area under the curve y = f(x) from a to b is the integral of f from a to b,

A =

∫ b

a

f(x) dx.

Example. Exercise 5.3.18.

Definition. If f is integrable on [a, b], then its average (mean) value over [a, b] is

av(f) =
1

b− a

∫ b

a

f(x) dx.

Example. Exercise 5.3.62.

Examples. Exercise 5.3.76 and Exercise 5.3.88.
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