Chapter 5. Integrals

5.2. Sigma Notation and Limits of Finite Sums

Note. In this section we introduce a shorthand notation for summation. We will use this summation notation in the next section when we define the exact area under a curve.

Note. We use the sigma notation to denote sums:

\[\sum_{k=1}^{n} a_k = a_1 + a_2 + \cdots + a_n. \]

The Greek letter \(\Sigma \) ("sigma," corresponding to our letter "S") stands for "sum." The index of summation \(k \) reflects where the sum begins and ends, and in general \(a_k \) is some function of \(k \) which gives the \(k \)th term of the sum:

Examples. Exercise 5.2.2 and Exercise 5.2.12.

Note. In Appendix A.2. Mathematical Induction, the following are established (see Exercise A.2.11).
Theorem 5.2.A. Algebra for Finite Sums.

1. **Sum Rule**: \(\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k \)

2. **Difference Rule**: \(\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k \)

3. **Constant Multiple Rule**: \(\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k \)

4. **Constant Value Rule**: \(\sum_{k=1}^{n} c = nc \)

Example. Exercise 5.2.18.

Note. In Appendix A.2. Mathematical Induction, the following are established (see Example A.2.5, Exercise A.2.9, and Exercise A.2.10).

Theorem 5.2.B. The Sum of Powers of the First \(n \) Natural Numbers.

1. The first \(n \) natural numbers: \(\sum_{k=1}^{n} k = \frac{n(n + 1)}{2} \)

2. The first \(n \) natural numbers squared: \(\sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6} \)

3. The first \(n \) natural numbers cubed: \(\sum_{k=1}^{n} k^3 = \left(\frac{n(n + 1)}{2} \right)^2 \).

Examples. Exercise 5.2.24 and Exercise 5.2.28.
Definition. A partition of the interval \([a, b]\) is a set

\[P = \{x_0, x_1, \ldots, x_n\} \text{ where } a = x_0 < x_1 < \cdots < x_n = b. \]

Partition \(P\) determines \(n\) closed subintervals

\[[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n].\]

The length of the \(k\)th subinterval is \(\Delta x_k = x_k - x_{k-1}\).

Note. We now estimate the area bounded between a function \(y = f(x)\) and the \(x\)-axis. We make the convention that the area bounded above the \(x\)-axis and below the function is positive, and the area bounded below the \(x\)-axis and above the curve is negative. We estimate this “area” by choosing a \(c_k \in [x_{k-1}, x_k]\) and we use \(f(c_k)\) as the “height” of a rectangle with base \([x_{k-1}, x_k]\). Then a partition \(P\) of \([a, b]\) can be used to estimate this “area” by adding up the “area” of these rectangles. See Figure 5.9 below.
Definition. With the above notation, a Riemann sum of \(f \) on the interval \([a, b]\) is a sum of the form

\[
s_n = \sum_{k=1}^{n} f(c_k) \Delta x_k.
\]

Example. Exercise 5.2.38.

Example 5.2.5. Partition the interval \([0, 1]\) into \(n \) subintervals of the same width, give the lower sum approximation of area under \(y = 1 - x^2 \) based on \(n \), and find the limit as \(n \to \infty \) (in which case the width of the subintervals approaches 0).
Definition. The norm of a partition $P = \{x_0, x_1, \ldots, x_n\}$ of interval $[a, b]$, denoted $\|P\|$, is length of the largest subinterval:

$$\|P\| = \max_{1 \leq k \leq n} \Delta x_k = \max_{1 \leq k \leq n} (x_k - x_{k-1}).$$

Note. If $\|P\|$ is “small,” then a Riemann sum is a “good” approximation of the “area” described above.

Figure 5.10

Note. If $[a, b]$ is partitioned into n subintervals of equal length, then that length is $\Delta x_k = \Delta x = (b - a)/n$. In this case, if $n \to \infty$ then $\|P\| \to 0$.

Example. Exercise 5.2.48.